Statistical Modeling in the Context of Progression-free Survival

Dr. Frank Fleischer, Basel 12.03.2010

1. Introduction

Acknowledgements / Technical Remarks

Results obtained in cooperation with B. Gaschler-Markefski and E.Bluhmki

Simulations partially performed by J. Hocke and K. Schiefele

Thanks to Birgit, Julia, Karin and Erich !

Agenda

- 1. Introduction
- 2. Joint Modeling of PFS and OS
- 2.1 General model
- 2.2 Extensions
- 2.3 Case study (beta trial)
- 3. Investigator assessment vs Independent Review
- 3.1 General model
- 3.2 Quantification of bias caused by informative censoring
- 3.3 Numerical examples
- 4. Conclusions and Outlook

1. Introduction

Anti-cancer drug studies

- Most common (hard) endpoint overall survival (OS)
- Time to progression (TTP)

Time from randomisation to progression Censoring of patients that die before progression

- Progression-free survival (PFS)

Time from randomisation to earliest of progression and death: PFS = min(TTP, OS)

Progression e.g. based on RECIST criteria

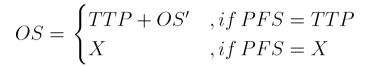
1. Introduction

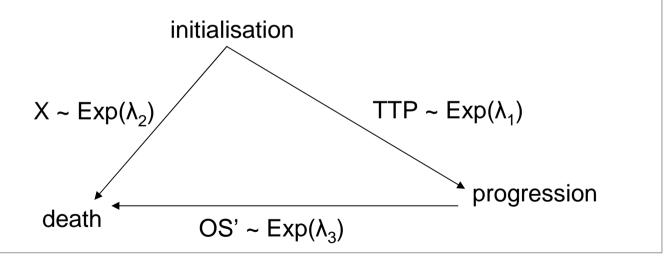
Two topics connected to PFS will be considered:

- 1) Joint modeling of PFS and OS
 - Sample Size calculation
 - Event monitoring and forecast
 - Quantification of confounding effects for OS
- 2) Informative censoring of PFS based on retrospective central review
 - Caused by errors in investigator assessment and retrospective mechanism
 - Quantification of bias introduced
 - Sensitivity analysis to cope with the bias

Statistical modeling might help...

2. Joint modeling of PFS and OS PFS and OS are traditionally considered independently (sample size calculations) initialisation initialisation $PFS \sim Exp(\lambda_{PFS})$ $OS \sim Exp(\lambda_{OS})$ progression or death death





Progression free survival

$$PFS = \min\left\{TTP, X\right\}$$

Overall survival

Let TTP ~ Exp(λ_1), X ~ Exp(λ_2), OS' ~ Exp(λ_3). Furthermore let PFS=min(TTP, OS) and

$$OS = \begin{cases} TTP + OS' & , if PFS = TTP \\ X & , if PFS = X \end{cases}$$

Then

$$F_{OS}(x) = 1 - \frac{\lambda_1}{\lambda_1 + \lambda_2 - \lambda_3} \exp^{-\lambda_3 x} + \frac{\lambda_3 - \lambda_2}{\lambda_1 + \lambda_2 - \lambda_3} \exp^{-(\lambda_1 + \lambda_2)x}$$

Let TTP ~ Exp(λ_1), X ~ Exp(λ_2), OS' ~ Exp(λ_3). Furthermore let PFS=min(TTP, OS) and

$$OS = \begin{cases} TTP + OS' & , if PFS = TTP \\ X & , if PFS = X \end{cases}$$

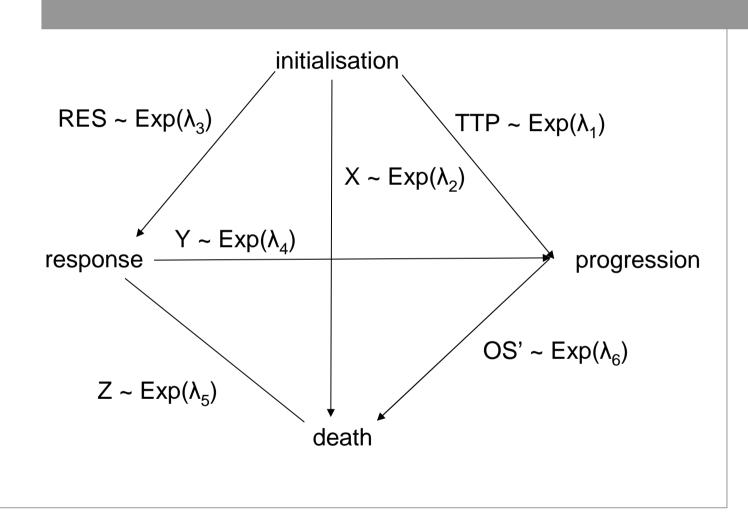
Then

$$Corr(PFS, OS) = \frac{\lambda_3}{\sqrt{\lambda_1^2 + 2\lambda_1\lambda_2 + \lambda_3^2}}$$
$$= \sqrt{\frac{Var(PFS)}{Var(OS)}}$$

Likelihood function:

$$L(\lambda_1, \lambda_2, \lambda_3) = (\lambda_1^{n_1} \exp(-\lambda_1 u))(\lambda_2^{n_2} \exp(-\lambda_2 u))(\lambda_3^{n_3} \exp(-\lambda_3 s))$$

Maximum-Likelihood-Estimators of λ_1 , λ_2 and λ_3 are:


$$\hat{\lambda}_1 = \frac{n_1}{u}$$
$$\hat{\lambda}_2 = \frac{n_2}{u}$$
$$\hat{\lambda}_3 = \frac{n_3}{s}$$

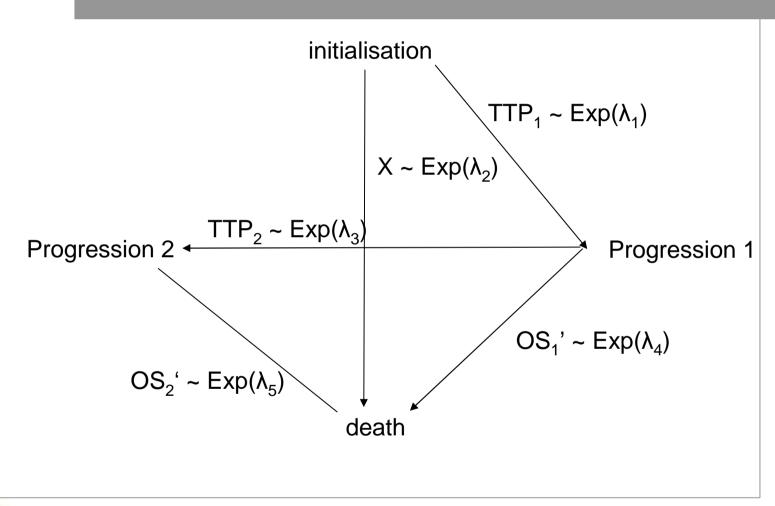
Similar MLEs for extensions of the model

2.2 Extensions

2.2 Extensions

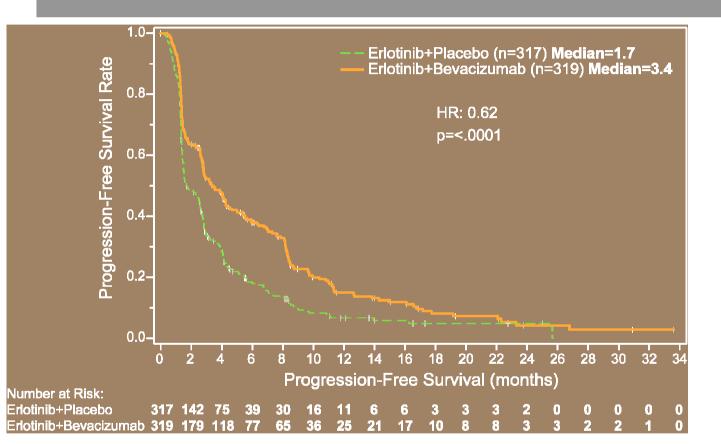
Let TTP ~ $Exp(\lambda_1)$, X ~ $Exp(\lambda_2)$, RES ~ $Exp(\lambda_3)$, Y ~ $Exp(\lambda_4)$, Z ~ $Exp(\lambda_5)$, OS' ~ $Exp(\lambda_6)$. Furthermore let PFS=min(TTP,X,RES+X,RES+Y) and

$$OS = \begin{cases} TTP + OS' &, if PFS = TTP \\ X &, if PFS = X \\ (RES + Y) + OS' &, if PFS = RES + Y \\ RES + Z &, if PFS = RES + Z \end{cases}$$

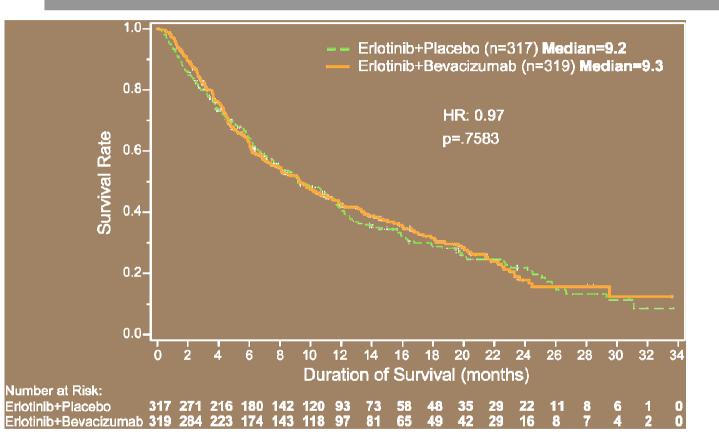

$$F_{OS}(x) = 1 - \left[\frac{(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5)(\lambda_2(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_6) - \lambda_1\lambda_6)}{(\lambda_1 + \lambda_2 + \lambda_3)(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_6)(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5)} \right] \exp^{-(\lambda_1 + \lambda_2 + \lambda_3)(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_6)(\lambda_1 + \lambda_2 + \lambda_3) - \lambda_4 - \lambda_5)} \\ + \frac{\lambda_3(\lambda_6(\lambda_4 + \lambda_5) - \lambda_3\lambda_5(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5)}{(\lambda_1 + \lambda_2 + \lambda_3)(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_6)(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5)} \right] \exp^{-(\lambda_1 + \lambda_2 + \lambda_3)x} \\ - \frac{\lambda_1(\lambda_4 + \lambda_5 - \lambda_6) + \lambda_3\lambda_4}{(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_6)(\lambda_4 + \lambda_5 - \lambda_6)} \exp^{-\lambda_6 x} \\ + \frac{\lambda_3(\lambda_6 - \lambda_5)}{(\lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5)(\lambda_4 + \lambda_5 - \lambda_6)} \exp^{-(\lambda_4 + \lambda_5)x} \\ = 1 - A \exp^{-(\lambda_1 + \lambda_2 + \lambda_3)x} - B \exp^{-\lambda_6 x} + C \exp^{-(\lambda_4 + \lambda_5)x} \end{cases}$$

2.2 Extensions

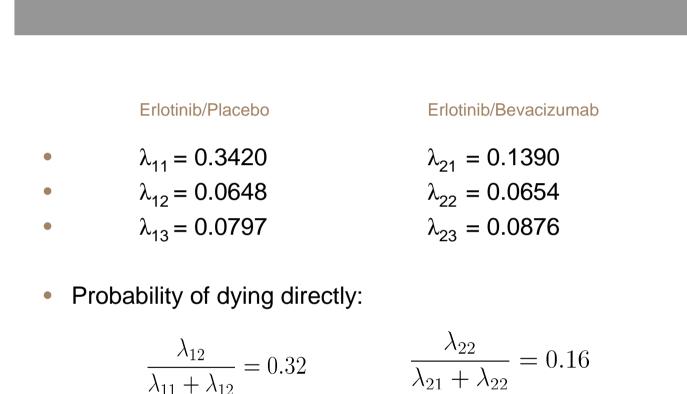
- Bevacizumab in NSCLC, Phase III, 2nd line
- Erlotinib/Bevacizumab vs. Erlotinib/Placebo
- Given data:


n = 636 patients

- med_{PFS,Bev}= 3.4 months, med_{OS,Bev} = 9.3 months and 75% quartile for OS = 4.1 months
- med_{PFS,Plac}= 1.7 months, med_{OS,Plac} = 9.2 months and 75% quartile for OS = 4 months
- Significant advantage of Bevacizumab in PFS (p<0.01)
- No significant advantage of Bevacizumab in OS (p=0.758)



HR is estimated using stratified Cox model; P value is based on stratified Logrank test. Stratification factors are: ECOG PS, Smoking Status Hands Sexth J, ASTRO-IASLC 2008



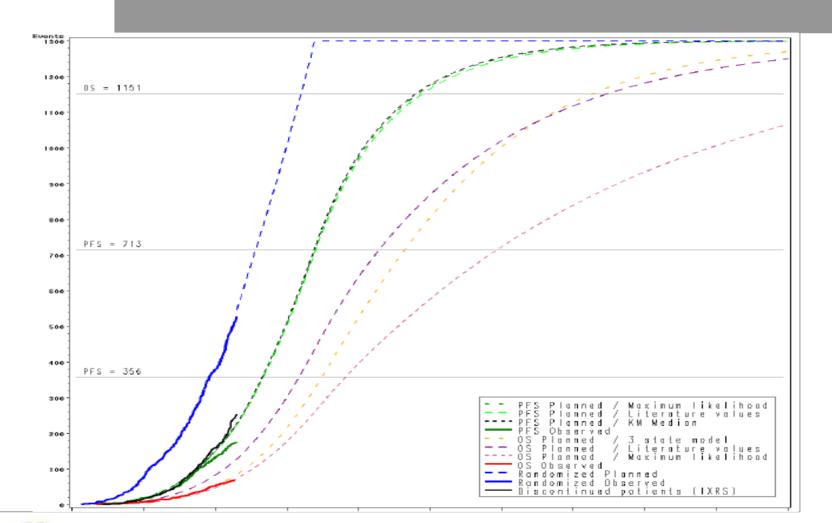
HR is estimated using stratified Cox model; P value is based on stratified Logrank test. Stratification factors are: ECOG PS, Smoking Status **Pariods Sexth J, ASTRO-IASLC 2008**

• Question:

• Where does the increased hazard of dying after progression in the Bevacizumab group come from?

• Possible explanation:

- More or different subsequent treatment in the Placebo group compared to the Bevacizumab group
- confounding effect


- Size of the confounding effect:
- Replace $\lambda_{13} = 0.0797$ in the Placebo group by $\lambda_{23} = 0.0876$ from the Bevacizumab group
- New med_{OS,Plac} = 8.6 months (old med_{OS,Plac} = 9.2 months)
- Confounding effect caused by subsequent treatment might be at most 0.6 months with respect to the median OS

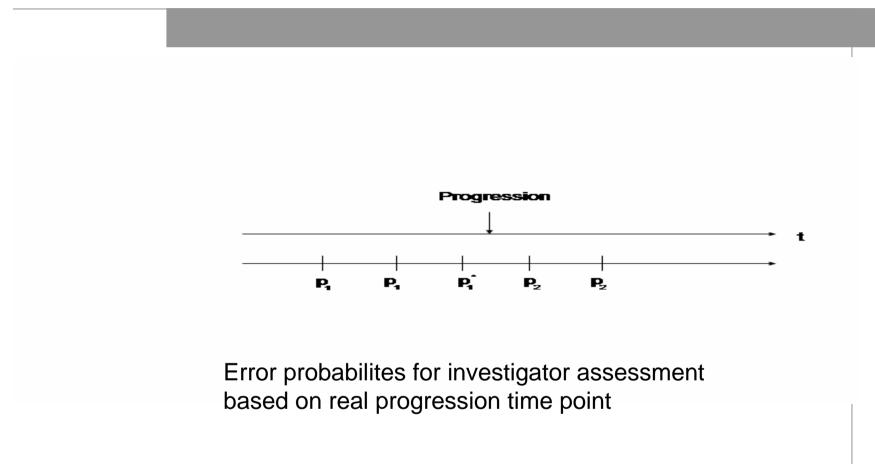
2.3 Case study (event monitoring and forecast)

3. Investigator assessment vs independent review

- Progression is assessed by independent review
 - Open-label trials
 - Potentially unblinding AE profile
 - To ensure quality of trial data
- Initial belief that assessment by independent review is superior to investigator assessment
 - Unbiased
 - Highly trained
 - Consistent

3. Investigator assessment vs independent review

- Independent review is usually performed retrospectively
 - No real-time assessments
 - Treatment decisions are investigator triggered
- Retrospective mechanism together with false investigator assessments can lead to
 - Informative censoring
 - Due to patients judged progressive by investigator but censored by independent review
 - Can lead to bias in PFS based on independent review



- Assessment every v units (e.g. 1 month)
- Data available until PD by investigator is declared
- Underlying time-to-event T (e.g. Weibull-distributed)
- Error probabilities of investigator:
 - p₁* False PD at assessment closest before T
 - p₁ False PD at other assessments
 - p₂
 False Non-PD at assessment after T
- Independent review assesses perfectly for data available

• The hazard of becoming progressive is given by

$$\lambda_k = \frac{P((k-1)v \le T < kv)}{P((k-1)v \le T)} = \frac{S_T((k-1)v) - S_T(kv)}{S_T((k-1)v)}$$

The hazard of being judged progressive by independent review is given by

$$\lambda_k^* = \frac{P(T_{ind} = kv, T_{ind} \text{ not censored})}{P(T_{ind} \ge kv)} = \frac{S_T((k-1)v) - S_T(kv)}{\frac{p_1^* - p_1}{1 - p_1^*} S_T(kv) + S_T((k-1)v)}$$

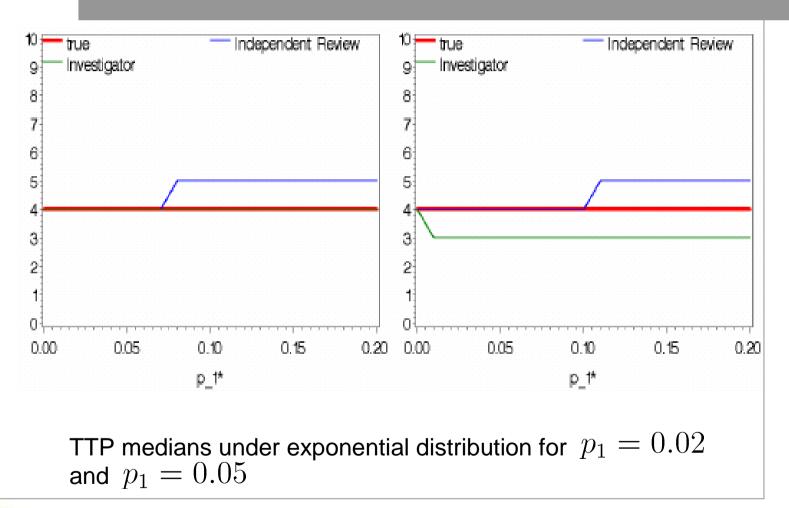
for $k \ge 2$ and $\lambda_1^* = \lambda_1$

- => In general $\lambda_k \neq \lambda_k^*$
 - Unless $p_1 = p_1^*$
 - => Bias in the independent review
 - Independent of p_2
- Difference between p_1 and $p_1^{\ast}\;$ is the decisive factor in this model
 - No difference => no informative censoring => no bias
 - Large difference => informative censoring => bias

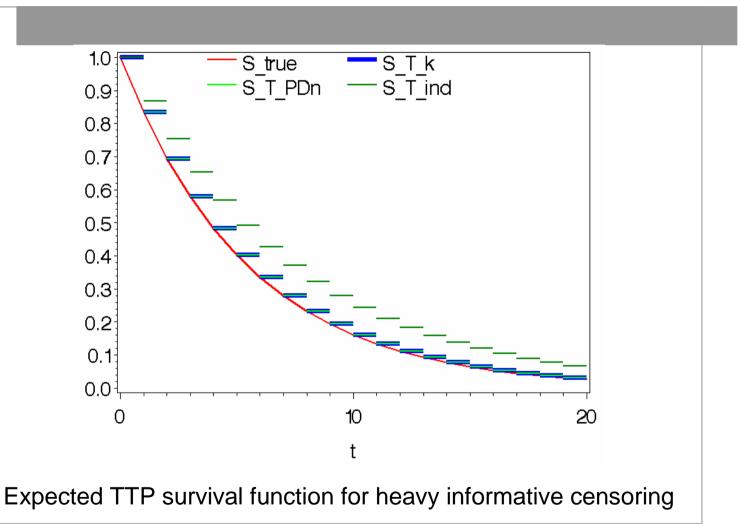
- What to do?
 - Discordance rate only helps partially
 - Low discordance => Small/no bias
 - High discordance does not necessarily indicate bias
- Sensitivity analysis
 - PD at next time-point (PDn) analysis
 - Patients censored by independent review but PD by investigator are considered PD at next scheduled time-point

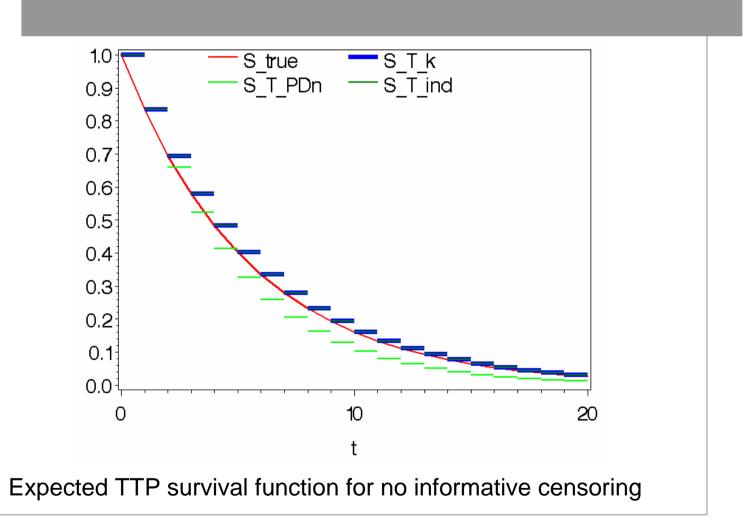
• Hazard for PDn-analysis

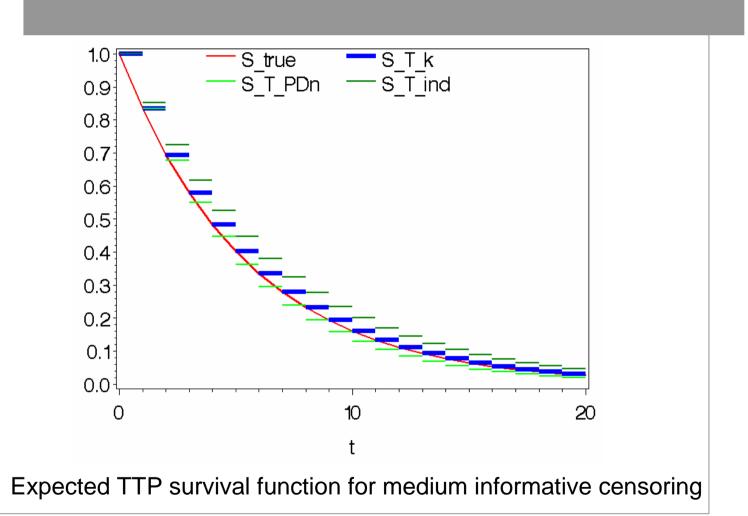
$$\lambda_k^{PDn} = \frac{P(T_{PDn} = kv)}{P(T_{PDn} \ge kv)} = \frac{S_T(k-1)v - (1-p_1)S_T(kv)}{S_T((k-1)v)}$$


• Useful sandwiching property if $p_1^* \ge p_1$

$$\lambda_k^{PDn} \ge \lambda_k \ge \lambda_k^*$$







4. Conclusions and Outlook

- Statistical modeling can be of help in various topics related to PFS
 - Joint modeling of PFS and OS
 - Bias of retrospective independent review due to errors in investigator judgement
- Can help to come up with
 - More precise sample size estimates
 - Monitoring and forecast of events
 - Sensitivity analyses and when to apply them
 - Quantification of possible bias and confounding effects

Literature

- Dodd LE, Korn LE, Freidlin B, Jaffe C, Rubinstein LV, Dancey J., Mooney MM. Blinded Independent Central Review of Progression-Free Survival in Phase III Clinical Trials: Important Design Element or Unnecessary Expense? Journal of Clinical Oncology 2008; 26:3791-3796.
- Hainsworth J., Herbst R. A phase III multicenter, placebocontrolled double-blind randomized clinical trial to evaluate the efficacy of Bevacizumab in combination with Erlotinib compared with Erlotinib alone for treatment of advanced non-small cell lung cancer after failure of standard first-line chemotherapy. Multidisciplinary Symposium in Thoracic Oncology, 2008, Chicago, II.
- Fleischer, F., Gaschler-Markefski B., Bluhmki E. A statistical model for the dependence between progression-free survival and overall survival. Statistics in Medicine 2009; 28: 2669-2686.
- Fleischer, F., Gaschler-Markefski B., Bluhmki E. How is retrospective independent review influenced by investigatorintroduced informative censoring. A quantitative approach. Preprint (draft).

2.3 Extensions

Let

- u be the sum of all observed times to the first event, including the observed times of patients censored while in the initial state
- s the sum of all times from progression to death, including the times of patients censored while in progression
- n be the number of patients in the study
- n_1 be the number of patients, who progress
- n₂ be the number of patients, who die directly without progression
- n₃ be the number of patients, who progress and then die

