Blinded sample size reestimation with count data

Tim Friede¹ and Heinz Schmidli²

¹ University Medical Center Göttingen, Germany
 ² Novartis Pharma AG, Basel, Switzerland

Motivating Example: Relapse Counts in Multiple Sclerosis

- placebo ARR in
 RRMS (Sormani et al, 2009)
- trend over time
 and substantial
 variation
- recently published placebo-controlled fingolimod trial: placebo ARR 0.7 expected in sample size calculation, observed 0.4

Poisson Counts, Rate Ratio and Wald Test

- data: D_T and D_C Poisson counts with . . .
 - event rates λ_T and λ_C
 - follow-up times y_T and y_C
- hypotheses: $H_0: \theta = 1$ versus $H_1: \theta < 1$ with $\theta = \lambda_T / \lambda_C$
- hypothesis test: reject H_0 , iff $Z \ge z_{1-\alpha}$ whereby

$$Z = \frac{\log(\hat{\lambda}_T / \hat{\lambda}_C)}{\sqrt{1/D_T + 1/D_C}} \quad \text{with} \quad \hat{\lambda}_i = D_i / y_i$$

Sample Size Calculation for Poisson Counts

- desired power 1β and relevant effect size θ^{\star}
- assuming same follow-up for all patients and 1:1 randomisation
- overall event rate $\bar{\lambda} = (\lambda_C + \lambda_T)/2$
- approximate sample size per group (see e.g. Ng & Tang, 2005)

$$n = \frac{1}{\overline{\lambda}} \frac{(1+\theta^{\star})^2}{2 \ \theta^{\star}} \frac{(z_{\alpha}+z_{\beta})^2}{(\log \theta^{\star})^2}$$

Internal Pilot Study Design (Wittes & Brittain, 1990)

- initial sample size estimation $n_0 = n(\alpha, 1 \beta, \Delta^*, \hat{\sigma}_0^2)$
 - significance level α , desired power 1β , clinically relevant effect Δ^{\star}
 - initial estimate $\hat{\sigma}_0^2$ of the nuisance parameter σ^2 (from other studies)

• sample size review:

- after recruitment of $n_1 = \pi n_0$ patients (e.g., $\pi = 1/2$)
- estimation of nuisance parameter $\rightarrow \hat{\sigma}^2$
- sample size *re-estimation* $\hat{N} = n(\alpha, 1 \beta, \Delta^*, \hat{\sigma}^2)$
 - * "restricted": $n_2 = \max(n_0, \hat{N}) n_1$
 - * "unrestricted": $n_2 = \max(n_1, \hat{N}) n_1$ (Birkett & Day, 1994)

• final analysis

- estimation of treatment effect and hypothesis test
- with all $n_1 + n_2$ patients

Sample Size Re-estimation and International Guidelines

• ICH Guideline E9 (1998)

The steps taken to preserve blindness and consequences, if any, for the type I error [...] should be explained.

- CHMP Reflection Paper on Adaptive Designs (2007) Whenever possible, methods for blinded sample size reassessment [...] that properly control the type I error should be used.
- draft FDA guidance on adaptive designs (2010), Sec. V.B Sample size adjustment using blinded methods to maintain desired study power should generally be considered for most studies.

Blinded Sample Size Recalculation for Poisson Counts

- overall event rate $\bar{\lambda}$ estimated in blinded fashion from data of IPS

$$\widehat{\lambda}_{1.} = \frac{D_{1T} + D_{1C}}{y_{1T} + y_{1C}} = \frac{D_{1.}}{y_{1.}}$$

similar to Gould's approach for binomial data, see Gould (1992), Friede & Kieser (2004)

- assuming constant event rates within treatment groups over the course of the study, all data available can be used
- plugging in the observed overall event rate $\hat{\lambda}_1$. for $\bar{\lambda}$ in sample size formula leads to a new sample size estimate

Extension to Overdispersed Poisson Counts

- overdispersion:
 - so far $Var(D_i) = \lambda_i y_i$
 - now $Var(D_i) = \sigma^2 \lambda_i y_i$ with overdispersion parameter $\sigma^2 \ge 1$
 - quasi-likelihood approach (McCullagh & Nelder, 1989)
- test statistic allowing for overdispersion: $Z^{(O)} = Z/\tilde{\sigma}$

• sample size:
$$n^{(O)} = \sigma^2 n$$

Extension to Overdispersed Poisson Counts (cont.)

- various estimators for σ^2 proposed, e.g. method of moments estimator

$$\tilde{\sigma}^2 = \left(\sum_{i=T,C} \sum_{j=1}^{n_i} \frac{(D_{ij} - \hat{\lambda}_i)^2}{\hat{\lambda}_i} \right) / (n_T + n_C - 2)$$

- for the purpose of a blinded review the dispersion parameter σ^2 estimated in blinded fashion by

$$\tilde{\sigma}_{1.}^{2} = \left(\sum_{i,j} \frac{(D_{1ij} - \bar{\lambda}_{1.}y_{1.})^{2}}{\bar{\lambda}_{1.}y_{1.}} \right) / (n_{T} + n_{C} - 1)$$

Simulation Study

- motivated by trials in relapsing MS
 - phase III: relapse counts (no or small overdispersion)
 - phase II: MRI lesion counts (large overdispersion)
- number of simulated trials per scenario: 100,000 for power (type I error rate) and 10,000 for sample size distribution
- distributional assumptions: Poisson and Negative Binomial (as an example for overdispersed counts)

Simulation Study Setup

	Relapses	MRI lesions		
Proportion π in IPS	0.2, 0.5	0.4		
Overall event rate $ar{\lambda}$	0.5, 0.51,, 1	5, 6,, 15		
Dispersion parameter σ^2	1, 1.1,, 2	20, 25,, 40		
Under the null hypothesis H_0 : $\theta = 0$				
Required sample size N	100, 200,, 500	50, 75,, 150		
Under the alternative H_1 : $\theta = \theta_a$				
Assumed overall event rate $ar{\lambda}_a$	0.75	10		
Assumed dispersion σ_a^2	1	30		
Assumed rate ratio $ heta_a$	0.6, 0.75	0.5		
Target power $1-eta$	0.90	0.80		

Relapses: Misspecification of the Overall Event Rate

Poisson counts (no overdispersion); blinded reviews including 20% of patients in the internal pilot; rate ratios $\theta = 0.6$ (dashed) and $\theta = 0.75$ (solid); fixed design (grey) for comparison.

Misspecification of Overall Event Rate and Overdispersion

Likelihood Approach: Negative Binomial Distribution

- likelihood-based inference assuming a particular mixture distribution, e.g. negative binomial (Aban et al, 2009)
- Cook et al (2009) proposed a blinded procedure based on an EM algorithm
 - computationally more demanding than our approach outlined above
 - on the other hand, our approach does not utilize all information under sampling from negative binomial distributions
- **new approach**: assuming negative binomial distributions ML estimates of the overall event rate and of the shape parameter are derived in blinded review ignoring treatment groups

Non-inferiority Trials

- other indications: for instance exacerbation counts in asthma and COPD (Keene et al 2007, 2008)
- in asthma / COPD standard treament exist and placebo therefore (at least long-term) unethical
- active controlled non-inferiority trials

Non-inferiority: Type I Error Rates and Power

Simulation study motivated by trials in COPD with average study sizes ranging from 700 to 1300 patients

Scer	nario	Туре І	Power
ϕ	λ	error rate	
0.4	1	0.0253	0.7985
	1.5	0.0255	0.7984
	2	0.0269	0.8054
0.5	1	0.0227	0.8073
	1.5	0.0241	0.7984
	2	0.0243	0.8010
0.6	1	0.0235	0.8015
	1.5	0.0259	0.7947
	2	0.0259	0.7991

Conclusions

- type I error rate: similar to fixed design tests
- power robust against misspecifations of both overall event rate and overdispersion parameter
- blinded reviews fulfill regulatory requirements

References

- Aban IB, Cutter GR, Mavinga N. Inferences and power analysis concerning two negative binomial distributions with an application to MRI lesion counts data. *Computational Statistics & Data Analysis* 2009; **53**: 820–833.
- Cook RJ, Bergeron PJ, Boher JM, Lie Y. Two-stage design of clinical trials involving recurrent events. Statistics in Medicine 2009; 28; 2617-2638.
- Friede T, Kieser M. Sample size recalculation for binary data in internal pilot study designs. *Pharmaceutical Statistics* 2004; **3**: 269–279.
- Gould AL. Interim analyses for monitoring clinical trials that do not materially affect the type I error rate. *Statistics in Medicine* 1992; **11**: 55–66.
- Keene ON, Calvery PMA, Jones PW, Vestbo J, Anderson JA. Statistical analysis of exacerbation rates in COPD: TRISTAN and ISOLDE revisited. European Respiratory Journal 2008; 32: 17-24.
- Keene ON, Jones MRK, Lane PW, Anderson J. Analysis of exacerbation rates in asthma and chronic obstructive pulmonary disease: example from the TRISTAN study. Pharmaceutical Statistics 2007; 6: 89-97.
- McCullagh P, Nelder JA. Generalized Linear Models (2nd edn). Chapman & Hall, 1989.

- Ng HKT, Tang M-L. Testing the equality of two Poisson means using the rate ratio. *Statistics in Medicine* 2005; **24**: 955–965.
- Wittes J, Brittain E. The role of internal pilot studies in increasing the efficacy of clinical trials. Statistics in Medicine 1990; **9**: 65–72.