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Can one extract
causal information from

high-dimensional observational data?
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What is a causal effect?
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What is a causal effect?
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Another example: Smoking
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Scenario 1: Observe 1000 smokers and count the
incidence of lung cancer
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Scenario 1: Observe 1000 smokers and count the
incidence of lung cancer

Scenario 2: Make 1000 random people smoke and 
count the incidence of lung cancer
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Scenario 1: Observe 1000 smokers and count the
incidence of lung cancer

Scenario 2: Make 1000 random people smoke and 
count the incidence of lung cancer

are different.
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What is a causal effect?
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CHANGE

BY

INTERVENTION
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How to find causal effects?
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Two groups of plots: Identical in all aspects (sunlight, water, soil quality, …)

Experimental
Data



How to find causal effects?
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Two groups of plots: Identical in all aspects (sunlight, water, soil quality, …)
Practice: Randomized assignment

Experimental
Data
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How to find causal effects?
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Experimental
Data

Outcome due to fertilizer, 
since everything else was equal



How to find causal effects?

Sometimes, randomized controlled experiments are 
 too expensive (gene experiments)
 too time-consuming (gene experiments)
 unethical (HIV treatment)
 just not practical (smoking).
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If experiment is impossible…
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Observational
Data



… observe fields of two farmers.
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Observational
Data



… observe fields of two farmers.
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Observational
Data

Groups not guaranteed 
to be identical in all aspects (sunlight, water, soil quality, …)



… observe fields of two farmers.
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Observational
Data



… observe fields of two farmers.
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Observational
Data

Is outcome due to fertilizer?
We can’t tell !



… observe fields of two farmers.
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Observational
Data



… observe fields of two farmers.
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Observational
Data



How to find causal effects?

Can one extract causal information 
from observational data alone?
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Goal of this talk

 IDA finds a set of possible causal effects given 

observational data consistently even in high dimensions.

 One element of the set is the true causal effect;

bounds on set are useful

 Does not replace randomized experiments

 Helps prioritizing and designing random experiments
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IDA



Example

 Yeast: Saccharomyces cerevisiae
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Example

 Yeast: Saccharomyces cerevisiae
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Example

 Yeast: Saccharomyces cerevisiae
 What are the causal effects among 

the thousands of genes?
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Example

 Yeast: Saccharomyces cerevisiae
 What are the causal effects among 

the thousands of genes?
 Approach: 

Model gene expression of each gene
as a random variable.

Can we use the 
joint distribution of gene expression
to extract 
causal information?
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Distribution 
oracle

Here is distribution 
oracle.
Now find the causal 
effect!



Outline in Theory
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Causal
Structure

do-calculus
with known

causal structure

Causal
effects

Distribution 
oracle

IDA



Pearl’s do-operator

 Notation for causal intervention

P(Y=y | do(X=x))

“distribution of Y, if there is an intervention in variable X”
 Causal effect

C(x’) = d/dx E[Y=y | do(X=x)]|x=x’

“change in expected value of Y, if there is an intervention
in variable X”
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do-calculus
with known

causal structure



P(Y=y | X=x) ≠ P(Y=y | do(X=x))
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P(rain | wet) = high

P(rain | do(wet)) = 
= P(rain) =
= low

Pick a random day:

do-calculus
with known

causal structure



Pearl’s do-calculus
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Causal structure

X

Y

Z Rules:
Expression with “do”

Expression without “do”

Judea Pearl, “Causality”, 2010, Cambridge University Press

do-calculus
with known

causal structure



Example: Back-door Adjustment
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Causal structure

X

Y

Z

Rules

P(Y=y | do(X=x)) 

P(Y=y | X=x, Z=0) * P(Z=0) +

P(Y=y | X=x, Z=1) * P(Z=1)

Assume Z is binary (0/1)

do-calculus
with known

causal structure
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Causal structure

X

Y

Z

Rules

P(Y=y | do(X=x)) 

P(Y=y | X=x, Z=0) * P(Z=0) +

P(Y=y | X=x, Z=1) * P(Z=1)

Assume Z is binary (0/1)

“do”

do-calculus
with known

causal structure



Example: Back-door Adjustment
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Causal structure

X

Y

Z

Rules

P(Y=y | do(X=x)) 

P(Y=y | X=x, Z=0) * P(Z=0) +

P(Y=y | X=x, Z=1) * P(Z=1)

Assume Z is binary (0/1)

No “do”

do-calculus
with known

causal structure



Conclusion 1
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If causal structure is known, 

we can infer causal effects 

from observations

do-calculus
with known

causal structure



Outline in Theory
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Causal
Structure

do-calculus
with known

causal structure

Causal
effects

Distribution 
oracle

IDA 



Estimate Causal Structure
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Causal
Structure

Oftentimes, causal structure is unknown

Estimate causal structure
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Causal Directed Acyclic Graph (DAG)

X W
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Structure
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Causal Directed Acyclic Graph (DAG)

X W

Z Y

Random 
Variables

Direct 
cause

implies

Conditional independence relations 

among variables

Causal
Structure



Estimate a DAG model
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DAG encodes independence information

Independencies 
among 

variables given 
by oracle

Reverse 
engineering DAG

Causal
Structure



Estimate a DAG model
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DAG encodes independence information

Independencies 
among 

variables given 
by oracle

Reverse 
engineering DAG

PC Algorithm

P. Spirtes, C. Glymour, R. Scheines, “Causation, Prediction, and Search”, 2000, MIT Press

Causal
Structure



Ambiguity: Equivalence class
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Several DAGs describe exactly the same list of independence relations
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Ambiguity: Equivalence class
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Some DAGs describe exactly the same list of independence relations

X W

Z Y

X W

Z Y

X W

Z Y

Equivalence class: PARTIALLY Directed Acyclic Graph (PDAG)

PC Algorithm
finds 
equivalence class

Causal
Structure



Outline in Theory
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Causal
Structure

do-calculus
with known

causal structure

Causal
effects

Distribution 
oracle

IDA Up to   
equivalence 

class



Putting everything together
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Distribution

oracle
PDAG

DAG 1

…

DAG n

Effect 1

Effect n

Set of causal effects
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Putting everything together
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Distribution

oracle
PDAG

DAG 1

…

DAG n

Effect 1

Effect n

Set of causal effects

PC Algorithm
do-calculus

Bounds, e.g.

minimum absolute value



Outline in Theory
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Equivalence 
class of 
Causal

Structure

Set of 
Causal
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Distribution 
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do-calculus
with known

causal structureIDA
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I’m busy!
Find your own 
information on the 
distribution…



Outline in Theory Practice
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Outline in Theory Practice

68Markus Kalisch, ETH Zurich

Equivalence 
class of
Causal

Structure

Set of
Causal
effects

Observational
data

IDA
do-calculus
with known

causal structure

Conditional 
independence tests

Estimated properties 
of distribution



Outline in Theory Practice
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Equivalence 
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Causal

Structure

Set of
Causal
effects

Observational
data

IDA
do-calculus
with known

causal structure

Conditional 
independence tests

Estimated properties 
of distribution



Consistency in high-dimensions: Gaussian case

Estimating graphical models with PC algorithm

70Markus Kalisch, ETH Zurich

M. Kalisch, P. Bühlmann, “Estimating high-dimensional DAGs with the PC algorithm”, 

2007, JMLR 8, 613 - 636

Do-calculus in high dimensions

M.H. Maathuis, M. Kalisch, P. Bühlmann, 

“Estimating high-dimensional intervention effects from observational data”,

2009, Annals of Statistics 37, 3133 - 3164



Consistency in high-dimensions: Gaussian case

Estimating graphical models with PC algorithm
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M. Kalisch, P. Bühlmann, “Estimating high-dimensional DAGs with the PC algorithm”, 

2007, JMLR 8, 613 - 636

Do-calculus in high dimensions

M.H. Maathuis, M. Kalisch, P. Bühlmann, 

“Estimating high-dimensional intervention effects from observational data”,

2009, Annals of Statistics 37, 3133 - 3164

Intervention effects if

DAG is

Absent



Main assumptions & requirements
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• Gaussian data from unknown causal DAG

• Faithfulness to this DAG

• No hidden or selection variables

• Involves a tuning parameter



Experimental validation
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Complex system

Experiment

Top causal effects

Observational data

Top causal effects

Agreement ?

IDA



Back to the beer:

Experimental
validation of IDA
in
Saccharomyces
cerevisiae
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Setting

 5361 observed genes

 Experiments: 234 single-gene deletion mutants

 Observational data: 63 wild-type cultures

 Very high dimensional: 5361 variables, 63 observations
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234 * 5360 effects
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Top 10% causal 
effects from 
experiment

234 * 5360 effects
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Top 5000 

Causal effects

Using IDATop 10% causal 
effects from 
experiment

234 * 5360 effects
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Top 5000 

Causal effects

Using IDATop 10% causal 
effects from 
experiment

Top 5000 

effects using other
methods

234 * 5360 effects
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Top 10% causal 
effects from 
experiment

234 * 5360 effects

False 

Positives

True

Positives
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Outline in Theory
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IDA



Outline in Theory Practice
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Summary of assumptions
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• Data is faithful to an underlying causal DAG
• No hidden or selection variables
• Consistent in high-dimensions if

- data multivariate normal
- some regularity conditions on partial correlations
- underlying DAG is sparse

• For IDA also: All conditional expectations are linear



Conclusions
 Theoretical result: Under certain assumptions

IDA is consistent, even in high dimensions

 Causal effect not identified uniquely

(even without sampling error)

 Validation on experimental data

 IDA cannot replace randomized, controlled experiments

 IDA can help 

prioritizing and designing random experiments

 Software is available for free: R-package “pcalg”
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Current research

What if hidden and/or selection variables are present?
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Hidden variables
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X3X1 X2
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Hidden variables
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X3X1 X2

L1 L2

Hidden Variables

Observed Variables

IDA X3X1 X2

Wrong conclusion !



Selection variables
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Selection variables
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X1 X2

S1

Observed Variables

Selection Variables

IDA

X1 X2

X1 X2

or



Selection variables
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X1 X2

S1

Observed Variables

Selection Variables

IDA

X1 X2

X1 X2

or

Wrong conclusion !



Question

How can we describe a system with arbitrarily many hidden or 
selection variables?
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DAGs are not ideal

 Would have to know all hidden and selection variables
 Even if we knew them, there might be a problem:

Space of DAGs not closed under marginalization and 
conditioning
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Space of DAGs is not closed under marginalization
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X1

X4X3

X2

L1

Implies

X1 indep. of X3 and X4

X2 indep. of X3



Space of DAGs is not closed under marginalization
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X1

X4X3

X2

L1

Implies

X1 indep. of X3 and X4

X2 indep. of X3

X1

X4X3

X2

No DAG on the observed 

variables that implies the

same conditional independencies



Alternative that works:
Maximal Ancestral Graphs (MAGs)

100Markus Kalisch, ETH Zurich

X2

L1

X1

L2

X5

X4

X3

X2

X1 X5

X4

X3

True DAG True MAG

Arrowhead: X2 is no ancestor of X3 or a selection variable in true DAG

Arrowtail: X2 is an ancestor of X5 or a selection variable in true DAG

Richardson, T.S., Spirtes, P.,

Ancestral Graph Models,

2002, Ann. Stat. 30, 962-1030



In practice: Equivalence class again…
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Several MAGs describe exactly the same list of independence relations

X2

X1 X5
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In practice: Equivalence class again…
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Several MAGs describe exactly the same list of independence relations

X2

X1 X5
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X1 X5
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X1 X5

X4
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Equivalence class represented by a
Partial Ancestral Graph (PAG)
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X2

X1 X5

X4

X3



Equivalence class represented by a
Partial Ancestral Graph (PAG)
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X2

X1 X5

X4

X3

Is X1 ancestor of X4? – No!

Is X3 ancestor of X2? – Don’t know!



Algorithm to find PAG from data:
FCI
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Data only 
on 

observed 
variables

FCI PAG



FCI is correct, but:

 Given distribution oracle: FCI is correct

 Given data: 
- consistent under strict assumptions
- only feasible for a handful of variables: Very slow
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Spirtes, P., Glymour, C. and Scheines, R., 2000, Causation, Prediction and Search, MIT Press

Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S., 

Learning high-dimensional DAGs with latent and selection variables, to be submitted



New algorithm RFCI improves FCI
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Space of 
all DAGs



New algorithm RFCI improves FCI
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Space of 
all DAGs

No hidden or 
selection variables



New algorithm RFCI improves FCI
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RFCI and FCI yield same 
resultRFCI gives correct, but less 

information than FCI



For the intuition:
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X2

X1 X5

X4

X3

X2

X1 X5

X4

X3

FCI RFCI



New algorithm RFCI improves FCI

111Markus Kalisch, ETH Zurich

RFCI and FCI yield same 
result

RFCI gives correct, but less 
information than FCI

Simulation: 5 : 100’000



RFCI

 Finds correct ancestral information of the true underlying 
DAG even if arbitrarily many (unknown) hidden and/or 
selection variables are present

 In general, it does not find all relations
 Very often as informative as FCI
 Consistent even in high dimensional setting (much weaker 

assumptions than in FCI)
 Computationally fast (FCI up to ~10 variables; RFCI up to 

thousands of variables)
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Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S., 

Learning high-dimensional DAGs with latent and selection variables, to be submitted



Conclusion: Current research
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Information 
on

Causal
Structure

Set of
Causal
effects

Observational
data

Some “do-calculus”
with known

causal structure ?
Arbitrarily many, unknown

hidden or selection variables
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Thank you!
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