Bayesian Meta-Analysis in Drug Safety Evaluation

Amy Xia, PhD Amgen, Inc.

BBS Meta-Analysis of Clinical Safety Data Seminar Oct 2, 2014

Disclaimer: The views expressed herein represent those of the presenter and do not necessarily represent the views or practices of the presenter's employer or any other party.

Outline

- Personal Experience on Bayesian Applications in Drug Safety Evaluation
- Specific Examples on Bayesian Metaanalysis
 - Meta analysis for rare adverse event data
 - Meta-experimental design in evaluating CV risk for T2DM drug development
- Summary
 - Advantages of Bayesian Meta-analysis
 - Caveats and Recommendations

Current Use of Bayesian Methods in Industry

- Medical Device Industry
 - Regulatory support
 - Final FDA guidance released in Feb, 2010
 - It has been used regularly in support of clinical trial design and regulatory submission
- Biopharmaceutical Industry
 - Regulatory submission has been rare
 - Effectively used in
 - Early phase clinical trial design and monitoring for internal decision making
 - Analysis with complex modeling

Some Areas of Bayesian Impact/Applications

- Clinical trial design
 - Calculate posterior Pr (Success) to make E2L decision
 - Use of good prior information (historical data used via hierarchical modeling) appreciably reduced the size and the length of a trial
 - Use prediction to plan pilot and confirmatory studies as a whole
 - Bayesian adaptive design / dose finding
- Clinical trial sequential monitoring
 - Use posterior probability to continuously monitor an event of interest in a Phase 2 trial
 - Bayesian sequential monitoring plan to incorporate risk-benefit assessment for a clinical trial
- Analysis (hierarchical modeling)
 - Various applications in drug safety evaluation
 - Evidence synthesis/meta-analysis

Some Challenges in Drug Safety Evaluation

- How to detect unexpected adverse drug reactions while handling the multiplicity issue properly?
- How to synthesize data from different trials, or even different sources?
- How to deal with rare events?
- How to evaluate multi-dimensional, complex safety information as a whole?
- Can we monitor a potential safety issue in a continuous manner during a trial so patients can be better protected?

Specific Examples of Bayesian Applications in Safety Assessment

• Case 1: Clinical trial signal detection

 Case 2: Meta analysis for rare adverse event data

- Case 3: Meta-experimental design in evaluating CV risk for T2DM drug development
- Case 4: Joint modeling of longitudinal and timeto-event data
- Case 5: Continuously monitoring an adverse event of interest in a clinical trial

There are many more examples ...

Case Studies Meta analysis for rare adverse event data Example 1: Nissen Meta-analysis with Bayesian Fixed Effect Model Example 2: Bayesian Survival Metaanalysis Using Individual Patient Data

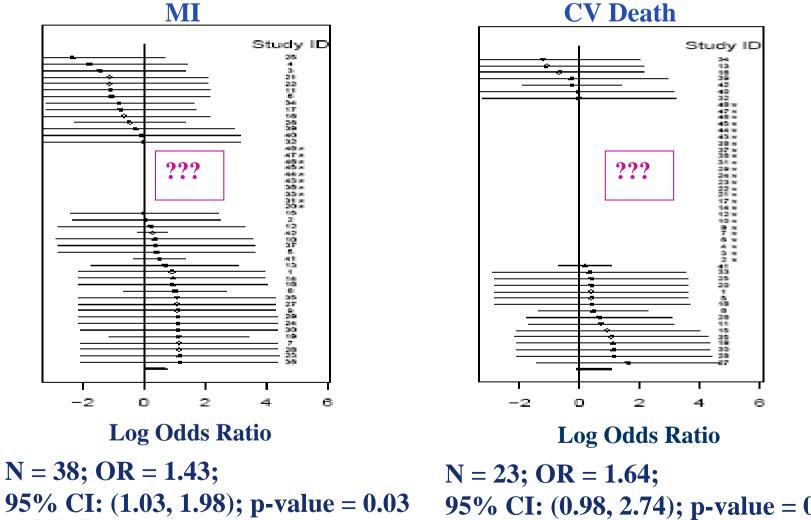
Statistical Issues with Meta-Analysis for Rare AE Data

- Standard inferences for meta-analysis rely on large sample approximations. They may not be accurate and reliable when
 - sample sizes from individual studies are small
 - total number of studies is small
 - total number of events is small
- Some serious AEs are often sparse, leading to zero events being observed in one arm or even both arms for some studies
- The problem with lack of power in evaluating heterogeneity is amplified when the number of studies is only modest or an event of interest is rare

Example 1: Nissen Meta-Analyses

- Rosiglitazone (RSG) is a hypoglycemic drug licensed in 1999 for treating patients with type 2 diabetes mellitus
- Nissen meta-analyses* included 48 (Ph 2,3,and 4) RCTs with a similar duration between treatment groups, and at least 24 weeks of drug exposure
 - Primary outcomes: MI and CV death
 - 6 trials with zero events of MI and CV death were excluded so
 42 trials were used in the analysis
 - Of 42 studies, 38 reported at least one MI and 23 reported at lease one CV death
 - Peto method was used (excluding double-zero studies)

Results from Nissen Meta-Analyses



Courtesy Dr. Lu Tian

95% CI: (0.98, 2.74); p-value = 0.06

CVD Results Based on Bayesian Fixed Effect Model

	Fixed Effect (n=23)	Fixed Effect (n=48)		Fixed Effect (n=23)	Fixed Effect (n=48)
OR	1.73	1.68	RD (%)	0.08	-0.05
95% Credible Set	[0.99, 2.86]	[0.95, 2.81]	95% Credible Set	[-0.02, 0.20]	[-0.15, 0.04]
Pr (OR > 1)	0.97	0.96	Pr (RD > 0)	0.94	0.16
Pr (OR > 1.2)	0.89	0.86	Pr (RD > 0.05%)	0.72	0.02
Pr (OR > 1.5)	0.65	0.60	Pr (RD > 0.1%)	0.37	0
Pr (OR > 2.0)	0.25	0.22	Pr (OR > 0.2%)	0.03	0

Example 2: Bayesian Survival Meta-Analysis with Individual Patient Data (IPD)

- Case study: a cross-company metaanalysis to investigate the short-term cancer risk in 3 TNF (tumor necrosis factor) inhibitors^{*}
- 74 RCTs of TNF inhibitors across multiple indications (n = 22,904)
- Results:
 - All cancers excluding NMSC (non-melanoma skin cancer): RR = 0.99 (95% BCI 0.61-1.68)
 - NMSC: RR = 2.02 (95% BCI 1.11-3.95)

* Askling, Fahrbach, Nordstrom, et al Pharmacoepi. and Drug Safety 2011; 20: 119-130

12

Challenges in This Meta-analysis

- Re-analyzing RCTs for outcomes not originally planned, and comparing data across sponsors (as opposed to pre-planned meta-analyses of emerging data, using predefined safety endpoints)
 - Although centralized, blinded adjudication was used, the adjudication of many events was based on minimal information
- Dealing with rare events
- Using individual patient data (with covariates) with timeto-event endpoints with non-constant hazards over time

Meta-analysis of rare events based on RCTs is a powerful tool but poses a series of methodological challenges that require due attention and action ¹³

Bayesian hierarchical piecewise exponential survival models were used

- Dividing time into (0-3, > 3mos) with constant hazard in each interval, allowing for relaxing the proportional hazards assumption
- Assessing class effects and drug-specific effects among 3 anti-TNF agents
- Investigating differences in 'sponsor-specific control-group effect'
- Taking into account patient-level covariates, between study heterogeneity, and timedependent covariates

Advantages of Bayesian Meta-Analyses for Rare AE Data

- Provide a powerful framework to model the uncertainty of all parameters
 - e.g. complex hierarchical piecewise exponential survival models
- 'Exact' methods allow meta-analyses without the need for continuity correction
- Inferences based on the exact full posterior distributions, relaxing the assumption of normality of the outcome (not sensible for rare event data)
- Straightforward and flexible to assess clinical important difference with different scales

Practical Considerations of Bayesian Meta-Analysis for Rare AE Data

- Non-informative priors may lead to convergence failure due to very sparse data
 - Weakly informative priors may be used to solve this issue, e.g.

Prior	Mean log(OR)	Std Dev	Translated Est. Mean HR (95% CI)
1	0.7	2	2 (0.04,110)
2	0	2	1 (0.02, 55)
3	0.7	0.7	2 (0.5, 8.2)

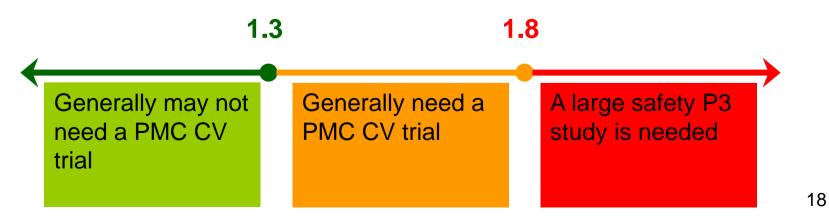
Sensitivity analyses with regard to the choice of priors need to be performed

Case Study Meta-experimental design in evaluating CV risk for T2DM drug development*

* Ibrahim, Chen, Xia and Liu, Biometrics, 2011.

Background – CV Evaluation of New Therapies to Treat Type 2 Diabetes (T2DM)

- FDA Guideline for Evaluating CV risk in a T2DM Product (12/2008) calls for a program-wide meta-analysis of CV outcomes
 - a meta-analysis of the randomized phase 2 and phase 3 studies, or
 - an additional single, large postmarketing safety trial.



An Overview of the New Bayesian Meta-experimental Design Approach

- Using survival models to assess whether the size of a clinical development program is adequate to evaluate a safety endpoint, after accounting for between study heterogeneity
- Extending the fitting and sampling priors of Wang and Gelfand (2002) to Bayesian meta-analysis design with a focus on controlling the type I error and power
- Proposing the partial borrowing power prior to incorporate the historical survival meta-data into the statistical design
- Applying the proposed methodology to the design of a phase 2/3 development program including a non-inferiority clinical trial for CV risk assessment in T2DM studies

A Hypothetical Design of Phase 2/3 Meta Studies with Two Categories

	Control Group	Experimental Drug	Total		
Category 1: Randomized Efficacy Superiority Studies					
Individual Study					
Phase 2a – 4 weeks (5 doses, placebo)	25	125	150		
Phase 2b – 24 weeks (3 doses, active control, placebo)	140	210	350		
Phase 3 – 24 weeks (3 doses, placebo)	100	300	400		
Phase 3 – 24 weeks (4 doses, placebo)	75	300	375		
Phase 3 add on therapy – 24 weeks (3 doses, placebo)	185	555	740		
Phase 3 add on therapy – 24 weeks (2 doses, placebo)	250	500	750		
Phase 3 add on therapy – 24 weeks (2 doses, placebo)	188	376	564		
Aggregated level	•				
Total sample size of the above 7 studies	963	2,366	3329		
Assumed annualized event rate of death/MI/stroke	1.2%	1.2%	1.2%		
Expected endpoints	5	12	17		
Probability of upper 95% CI on HR < 1.3 7.8%					
Category 2: Randomized CV outcome study (2 year equal enrollment, minimal of 2 years follow up)					
Sample size	5,000	5,000	10,000		
Assumed annualized event rate of death/MI/stroke	1.5%	1.5%	1.5%		
Expected endpoints	226	226	452		
Probability of upper 95% CI on HR < 1.3	6 CI on HR < 1.3 79.6%				
Combined Categories 1 & 2					
Expected endpoints	231	238	469		
Probability of upper 95% CI on HR < 1.3		81.1%			

Historical Meta Data Used to Formulate Priors for the Control Arm

Study (publication year)	Group	N	Events	Total patient year	Annualized event rate
Saxagliptin (2009)	Total control	1251	17	1289	1.31%
Liraglutide (2009)	placebo	907	4	449	0.89%
	Active control	<mark>1474</mark>	13	1038	1.24%
ACCORD (2008)	Standard therapy	5123	371	16000	2.29%
ADVANCE (2008)	Standard therapy	5569	590	27845	2.10%

Power and Type I Error for Meta-Design

		$n_{18} = n_{28} = 4000$		$n_{18} = n_{28} = 4500$		$n_{18} = n_{28} = 5000$	
			Type I		Type I		Type I
Model	a 0	Power	Error	Power	Error	Power	Error
Random	0	0.765	0.043	0.811	0.040	0.850	0.038
Effects	0.00625	0.787	0.047	0.831	0.045	0.866	0.042
	0.0125	0.801	0.050	0.843	0.047	0.874	0.044
	0.015	0.805	0.051	0.846	0.048	0.876	0.045
	0.025	0.814	0.054	0.855	0.050	0.883	0.047
	0.0375	0.819	0.055	0.860	0.052	0.887	0.049
	0.05	0.821	0.057	0.862	0.053	0.889	0.051
	0.075	0.826	0.058	0.865	0.055	0.892	0.052
	0.1	0.829	0.059	0.867	0.056	0.893	0.053

Summary of Bayesian Meta-Design

- The proposed Bayesian method allows for
 - planning sample size for a phase 2/3 development program in the meta-analytical framework by accounting for between-study heterogeneity
 - incorporating prior information for the underlying risk in the control population through the partial borrowing power prior
- We assess the operating characteristics (type I error and power) of the Bayesian meta-design via simulations
 - recommended by the FDA Bayesian device trials guidance
- Further extension on Bayesian sequential meta-design has been published (Chen, et al, SIM, 2014)

Advantages of using Bayesian statistics for meta-analysis

- Provides a unified framework for synthesizing evidence from multiple data sources/studies/treatments in a formal, consistent and coherent manner, taking all the uncertainty at different levels into account
 - Ability of handling complex problems (e.g. IPD, non-constant hazards)
- Allows formal incorporation of other sources of evidence by utilizing prior distributions
- Provides direct probability statements about true treatment effects under different scales (e.g. OR, RR, or RD)
- Provides prediction of the treatment effect in a new trial
- Appealing for rare event meta-analysis
 - Models modulate the extremes in the zero event setting
 - Avoid the need for continuity correction
 - Bayesian inference is based on the full posterior distributions, relaxing the assumption of normality

Caveats and Recommendations

- Caveats
 - Careful specification of prior distributions and form of the model (e.g. form of hierarchy)
 - Computational intensity
- Recommendations
 - Bayesian expertise should be sought
 - Sensitivity analyses against a range of priors and model structures

References

- Askling J, Fahrbach K, Nordstrom B, Ross S, Schmid, CH, Symmons D. 2011. Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: meta-analysis of randomized controlled trials of adlimumab, etanecept, and infliximab using patient level data. Pharmacoepi. and Drug Safety 20: 119-130.
- Higgins J, Spiegelhalter D. Being Sceptical about meta-analysis: a Bayesian perspective on magnesium trials in myocardial infarction. International Epidemiology Association 2002;31:96-104.
- Higgins J, Thompson S, Spiegelhalter D. A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society) 2009; 172(1): 137-159. DOI: 10.1111/j.14670-985X.2008.00552.x.
- Ibrahim J, Chen M, Xia H, Liu T. Bayesian Meta-Experimental Design: Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. Biometrics 2012; 68(2): 578-86.
- Kaizar EE, Greenhouse JB, Seltman H, Kelleher K. Do antidepressants cause suicidality in children? A Bayesian meta-analysis. Clin Trials. 2006;3(2):73-90; discussion 91-8.
- Kalil A. Is cefepime safe for clinical use? A Bayesian viewpoint. J. of Antimicrob. Chemother. 2011; 66: 1207-1209.
- Kim PW, Wu YT, Cooper C, et al. Meta-analysis of a possible signal of increased mortality associated with cefepime use. Clin Infect Dis 2010; 51: 381-9.
- Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is vague? a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine 2005; 24(15):2401–2428, doi:10.1002/sim.2112.
- Lee K, Thompson S. Flexible parametric models for random-effects distributions. Statistics in Medicine 2007; 27(3):418–434.
- Muthukumarana S, Tiwari RC. Meta-analysis using Dirichlet process. Statistical Methods in Medical Research Jul 2012; doi:10.1177/0962280212453891.

References

- Jones HE, Ohlssen DI, Neuenschwander B, Racine A, Branson M. Bayesian models for subgroup analysis in clinical trials. Clinical Trials Apr 2011; 8(2):129–143, doi:10.1177/1740774510396933.
- Ohlssen D, Price KL, Xia HA, Hong H, Kerman J, Fu H, Quartey G, Heilmann CR, Ma H, Carlin BP. 2014. Guidance on the implementation and reporting of a drug safety Bayesian network metaanalysis. Pharmaceutical Statistics 13(1): 55-70.
- Stangl DK, Berry DA, editors. Meta-analysis in medicine and health policy. New York: Marcel Dekker; 2000.
- Spiegelhalter DJ,Myles JP, Jones DR, Abrams KR. Bayesian methods in health technology assessment: a review. Health Technol Assess. 2000;4(38):1–130.
- Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research 2001; 10(4):277-303. DOI: 10.1177/096228020101000404.
- Sutton AJ, Cooper NJ, Jones DR, Lambert PC, Thompson JR, and Abrams KR. Evidence-based sample size calculation based upon updated meta-analysis. Statistics in Medicine 2007; 26, 2479-2500.
- Sutton A, Kendrick D, Coupland C. Meta-analysis of individual-and aggregate-level data. Statistics in Medicine 2008; 27(5):651–669, doi:10.1002/sim.2916.
- Turner R, Spiegelhalter D, Smith G, Thompson S. Bias modelling in evidence synthesis. Journal of the Royal Statistical Society: Series A(Statistics in Society) 2009; 172:21–47.
- Warn D, Thompson S, Spiegelhalter D. Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Statistics in Medicine 2002; 21(11):1601–1623, doi:10.1002/sim.1189.

Thank you!