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Bayesian modelling for combination 
dose-escalation trial that incorporates 
pharmacokinetic data



Topics covered
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 Rationale for novel modelling approach

 Bayesian dose exposure model
• Definition
• Integration into dose-escalation decision process

 Robust prior derivation

 Implementation in PhI studies at Novartis

 Conclusion



 PhIb combination dose-escalation trials: both drugs may 
be novel, both drugs may be escalated

 Two types of drug-drug interactions (DDI)
• Safety DDI: 

- Increased/decreased DLT rate from that expected as monotherapy
- BLRM models dose-DLT relationship and estimates safety DDI

• PK DDI: exposure of one or both drug(s) are increased/decreased 
from that expected as monotherapy

• Link between PK DDI and safety DDI can be complex
- PK DDI  may explain only parts of overall safety DDI 
- Safety DDI can be seen without PK DDI

 How to incorporate PK information in a robust way into 
dose escalation decision? 
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Background



Bayesian dose-DLT model
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Current use of PK data for dose selection

DLT rate 
posterior

Dose-
DLT
data

DLT
rate 
prior

Model 
recommended 

dose

DLT
escalation 

rules

Clinical 
expertise

Dose 
escalation 
decision

Other 
data

PK 
data

Bayesian dose-DLT model
(safety DDI)

PK data are already used in the decision



Adding Bayesian dose-exposure models
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Evolution in dose-escalation paradigm
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 New primary objective: identify ‘safe’ dose with desired exposure

 Combine outputs from independant modeling of dose-DLT and dose-
exposure relationships to establish MTD/RDE with optimal exposure 
of both agents

 Safety comes first! Highest doses allowed by Bayesian Logistic 
Regression Model (BLRM) following Escalation With Over-dose 
Control (EWOC) principle to control risk of over-toxicity

 Desired exposure driven by safety, pharmacodynamic and clinical 
activity (especially true for new targeted therapies with safer profile)

 Feasible since PK measured in all trials. Can be tailored to more 
complex settings 

 Doesn’t prevent escalation to proceed on the basis of safety data only 
(when PK data not available and not critical for next decision)  



Added value of integrating dose-exposure modelling
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 Decrease subjectivity of its use 
 Increase efficiency of decision process

• Escalation paths more varied and escalation of both drugs more 
likely

 Increase precision of the resulting dose recommendation
• Less dose pairs declared as the final recommended dose 
 Minimise number of patients treated at sub-optimal dose 

levels 
• Escalation faster when negative DDI
 Minimise number of patients overdosed

• Escalation more cautious when positive DDI

Simulation study [details in Cotteril (2015)]



One BLRM + two dose-exposure models
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 5-parameter BLRM for combination is used [Neuenschwander (2014)]

 Empirical bayesian dose-exposure model for each compound A and B:

log(pkAdA,dB) = φ1AI(dB=0) + φ2A log(dA/dA*))  + φ3AI(dB>0) + φ4A log(1+dB/dB*)  + εA

log(pkBdA,dB) = φ1BI(dA=0) + φ2B log(dB/dB*))  + φ3BI(dA>0) + φ4B log(1+dA/dA*)  + εB

εA~N(0, 1/τA2)

εB~N(0, 1/τB2)

Dose-dependent
Interactions«single-agent» models

Dose-independent
Interactions



Defining target exposures
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 Define target exposures TA and TB: typically exposures at s.a. RP2Ds 
but could be lower (e.g. if indicated by preclinical studies)

 Define relevant posterior summaries for each combination of interest:
• Median exposures (with probability intervals)
• Distance between posterior distribution of exposures and target exposures

• Probabilities of under/over exposure, e.g.

h h

and



Defining target exposures (cont.)
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 Identify ‘safe’ combinations (as per EWOC ) that allow to reach 
predefined target exposures for both drugs (as per metrics chosen)

 If there is too much uncertainty about target exposure, better not to use 
target exposure. Instead rely on estimates to learn about interaction.



Illustration after 1 cohort of 3 patients with large 
DDI
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Starting 
dose

Smallest 
distance

RP2D

Recommended 
next dose based 

on BLRM
(mg)
A/B

Posterior probability
of the BLRM recommended 

next dose

Estimated exposure (ng*h/ml)
90% probability interval

Underdose
[0%,16%)

Target 
toxicity

[16%,35%)

Excessive 
toxicity 

[35%,100%]

A
(target=22640)

B
(target=20335)

200/300 0.3998 0.4387 0.1615 8848 
[2569 ; 30070]

12880
[3693 ; 44480]

100/450 0.3672 0.4817 0.1505 4057
[1098 ; 14930]

18760
[7294 ; 48681]

Target when no PK DDI

Drug A(mg)      50          100            200        300         400          500         600
(s.a RP2D)

Drug B (mg)

150

300

450

750 (s.a RP2D)
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 A 4-step approach to combine all sources of prior 
information

 Step 1: leverage single agent data (+ relevant combination 
data)
• Fit bayesian models (using non-informative priors) to obtain informative 

priors for s.a. parameters φ1, φ2 and for inter patient variability ε
• Non-informative priors obtained for parameters related to DDI 
• Down-weight posterior variances so that effective sample size corresponds 

to moderate/substantial heterogeneity between historical data and on-study 
data (meta-analytic-predictive prior can also be used)

• PK information may only be available in external publication as summary 
statistics

Prior buidling and robustification
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 Step 2: integrate DDI predictions from PB/PK modelling:
• Simcyp is a population-based simulator: 

- Incorporates numerous databases containing human physiological, genetic 
and epidemiological information. 

- Allows to integrate this information with in vitro and clinical data to predict 
PK behavior in ‘real-world’ populations.

• Used to adapt parametrization of empirical Bayesian model to likely 
mechanism of DDI

• Build informative priors for all parameters, including those related to  
DDI: φ3, φ4 and also ε
- Use PB/PK model to simulate pkA and pkB for virtual patients
- Fit bayesian models on pkA and pkB (using non-informative priors)
- Down-weight posterior variances so that effective sample size corresponds 

to substantial/large heterogeneity between PB/PK DDI predictions and DDI 
in trial population

Prior buidling and robustification (cont.)
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 Step 3: build a non-informative (NI) prior for all 
parameters:
• Same as Simcyp prior but with further down-weighting so that 

effective sample size corresponds to one observation

 Step 4: combine 3 priors in a mixture that provides good 
behavior to the model even when conflict between prior 
and data
• Define prior weights, e.g. 0.4, 0.4 and 0.2 for SA, Simcyp and NI 

priors, respectively
• Prior weights are updated into posterior weights when model is 

updated with data

Prior buidling and robustification (cont.)



Illustration of mixture prior
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Mixture for dose-independent DDI
parameter

Posterior weights when data aligned 
with Simcyp prior 

prior weights: 0.4(SA), 0.4(Simcyp), 0.2(NI)

φ3



Implementation in protocol
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 Selected PK parameters are co-primary or key secondary 
endpoints

 Flexible wording regarding the recommendations provided by 
the Bayesian dose-exposure model 

 Estimated exposures provide additional information to further 
guide the dose selection

 No additional constraint on the dose escalation:
• For later cohorts, the dose escalation may occur without having the full PK data 

available, on condition that the EWOC criterion is met
• Higher escalation step allowed when negative PK DDI 



Implemented in 6 Novartis Oncology PhI trials so 
far
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 5 combinations trials:
- Combination treatment where significant PK DDI is expected
- PK data of single agent studies available
- Bayesian model parametrization can be tailored to design features (e.g. 

when s.a. PK run-in is added)

 1 single agent trial: 
• Limited toxicity anticipated + RP2D should have similar exposure 

than competitors

 No challenge from HA and IRBs so far



Concluding remarks
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 Evolution from current dose-escalation paradigm since the identification 
of the RDE/RP2D gives more weight to non-DLT data

 Current approach benefited from cross functional collaboration 
(biostatistics, clinical pharmacology, drug metabolism & 
pharmacokinetics, clinical)

 Requires an early and close collaboration at project team level
• DDI risk should be discussed and addressed early in protocol concept

 Requires more time to set up but lead to design with increased 
efficiency

 Method is still novel and adaptations are expected from learnings during 
execution phase of trials
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