Event projection: quantify uncertainty and manage expectations of broader teams

Kaspar Rufibach Department of Biostatistics, Roche Basel Methods, Collaboration & Outreach Group Basel, 28th April 2016

Agenda

- Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tail
- Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Agenda

- Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tail
- Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Challenge

Clinical trial with time-to-event outcome:

- Portion of patients accrued, some patients still to be accrued.
- Interim or final analysis after pre-specified number of events.

Questions:

- **1** When does this number of events happen?
- Can we assign a confidence interval around that timepoint?
- How to manage the potentially large uncertainty in clinical teams (and higher up)?

Implications:

- Resource allocation for running the trial.
- Gating of other trials, e.g. early phase combinations.
- Keep investors happy.

Example

Phase 3 trial with time-to-event primary endpoint (PFS).

All n = 1202 patients accrued: FPI 2010-04-06, LPI 2012-11-06.

First interim analysis:

• Clinical cutoff date: 2012-11-21.

• #events: 113.

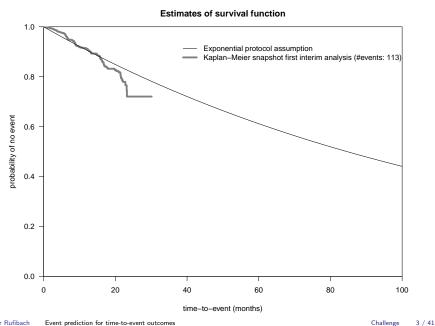
Based on this interim data \Rightarrow predict time when we see

• 248 events: second interim,

370 events: final analysis.

2 / 41

Kaplan-Meier estimate based on snapshot



Agenda

- 1 Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tai
- Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Expected number of events at T

S: chosen or estimated survival function.

Expected number of events m at T:

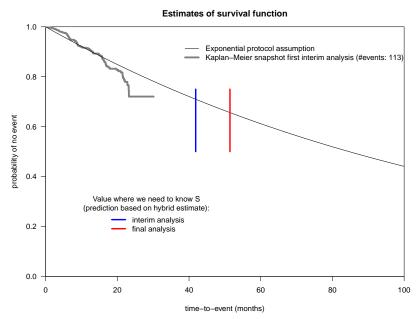
$$m(S) = \sum_{h \in \mathcal{I}_1} \mathbf{1} + \sum_{j \in \mathcal{I}_2} P\Big(\text{event in } (t_j, T] | \text{no event up to } t_j\Big) + \sum_{j \in \mathcal{I}_3} P\Big(\text{event in } (a_i, T]\Big)$$

$$= n + \sum_{j \in \mathcal{I}_2} \frac{S(t_j) - S(T)}{S(t_j)} \mathbf{1}\{T > t_j\} + \sum_{j \in \mathcal{I}_3} \Big(1 - S(T - a_i)\Big) \mathbf{1}\{T > a_i\}.$$

Sets of patients:

- \mathcal{I}_1 : patients who already had event, n.
- \mathcal{I}_2 : patients censored at t_i .
- \mathcal{I}_3 : patients to be recruited at a_i .

Need to have value for S at least up to T.



How to estimate *S*?

Nonparametrically via Kaplan-Meier or kernel estimate:

- + No or few assumptions about true $S \Rightarrow$ unbiased.
- + Can account for the "large steps" due to schedule of assessment.
- High variability, especially in tail.
- No extrapolation beyond last event / censoring time.

Fully parametric, e.g. Exponential or Weibull:

- + Efficient, if assumption is true.
- + Accurate estimate of tail, if assumption is true.
- + Can estimate S beyond where we have data.
- Biased if assumption not true.
- Not able to capture particular features of oncological time-to-event data (inspection intervals).

Hybrid approach: Use nonparametric where we have data, complement with parametric tail.

Agenda

- Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tail
- 4 Predicted analysis timepoints
- **(5)** Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Hybrid estimate

Proposed in Fang and Su (2011). Recipe:

- **①** Choose total number of change points k.
- 2 Estimate piecewise Exponential hazard with k change points.
- 3 Test for "significance" of change points.

Borrows strength of nonparametric and parametric approach.

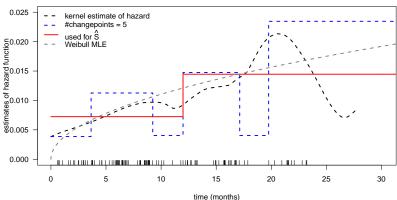
Allows to capture "big steps" due to schedule of assessments.

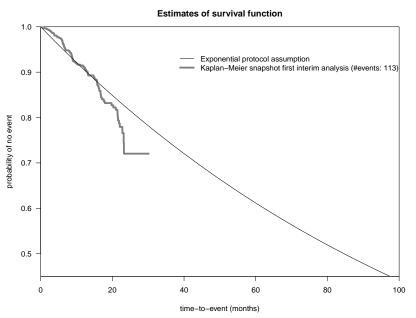
Change point:

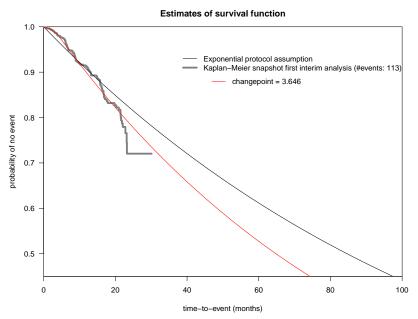
- Sequential test according to Goodman et al. (2011).
- To avoid overfitting correct α according to Lan and DeMets (1983).
- No change point: pure Exponential fit.
- ullet \geq 1 change point: Kaplan-Meier prior to selected change point, Exponential tail fit beyond selected change point.

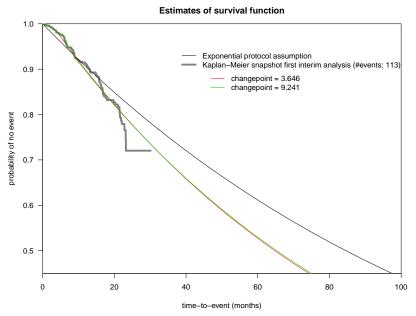
Alternatively: Bagiella and Heitjan (2001), Ying et al. (2004), Ying and Heitjan (2008), Di et al. (2016).

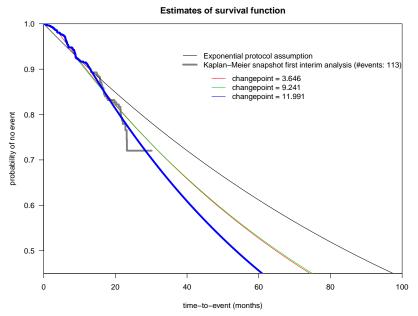
Apply hybrid approach

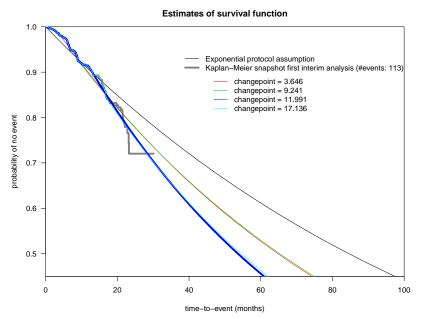


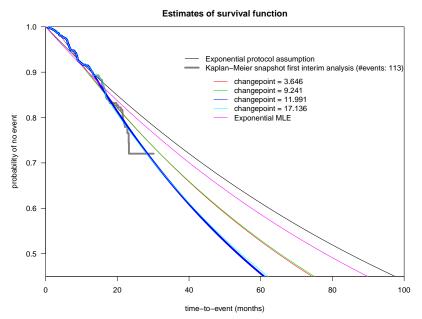


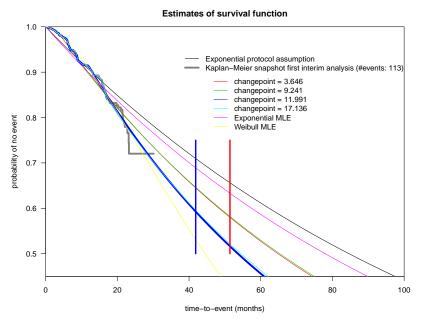








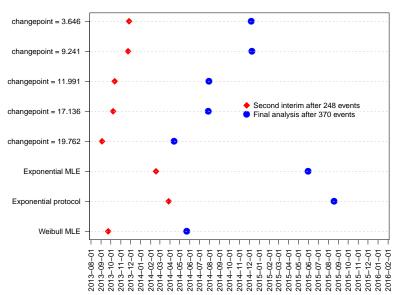




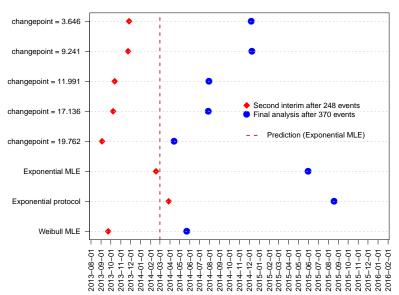
Agenda

- 1 Challenge
- 2 How to predict analysis timepoint in general
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tai
- Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

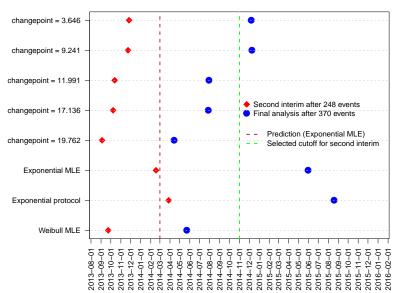
Predicted analysis timepoints



Predicted analysis timepoints



Predicted analysis timepoints



Shift

Communicated prediction: Exponential MLE \Rightarrow synthesis of protocol assumption and prediction based on hybrid estimate.

Prediction of second interim analysis:

Data: 113 events in 1202 patients.

Clinical cutoff: 2012-11-21.

• Initial prediction: 2014-03-01.

• Actual cutoff: 2014-11-01.

Shift of cutoff: 8.0 months.

8.0 months!

p.s.: 8.0 months earlier would certainly have been ok, but 8.0 months later...

Agenda

- 1 Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tai
- Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Uncertainty in event prediction

Recall formula:

$$m(S) = n + \sum_{j \in \mathcal{I}_2} \frac{S(t_j) - S(T)}{S(t_j)} 1\{T > t_j\} + \sum_{j \in \mathcal{I}_3} (1 - S(T - a_i)) 1\{T > a_i\}.$$

Trial was fully recruited when prediction made \Rightarrow uncertainty = Sampling error in estimation of S.

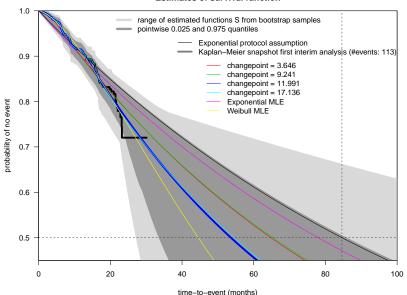
Proposal:

- Bootstrap time-to-event data: sample with replacement from (X_i, δ_i) .
- Re-estimate S via hybrid Exponential model for each bootstrap sample, choose change point based on sequential test ⇒ S estimated fully automatic.
- Compute analysis timepoint in each sample.
- Compute quantiles of these analysis timepoints ⇒ bootstrap percentile confidence interval for analysis timepoint.

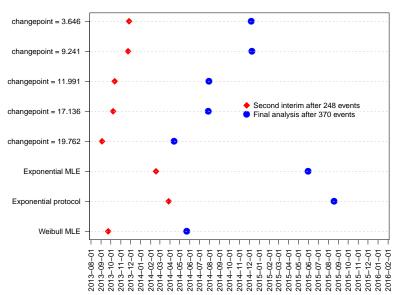
Validity of bootstrap for right-censored data: Efron (1981), see also Akritas (1986).

Bootstrapped survival function estimates

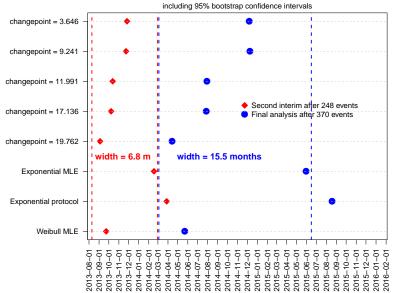
Estimates of survival function



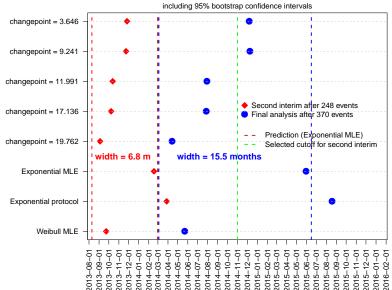
Analysis timepoints



Analysis timepoints

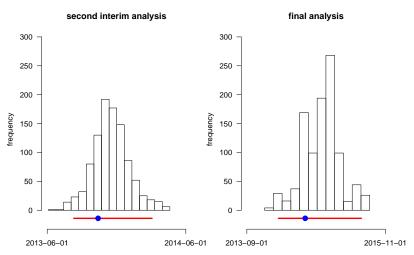


Analysis timepoints



Bootstrap distributions

Histograms of analysis timepoints, based on 1000 bootstrap samples Blue dot: point estimate based on hybrid estimate. CCOD 2012–11–21, 113 events.



Confidence intervals

Statistically sound.

Difficult to communicate to Big Boss. Initially, we did not communicate confidence interval, only gave point estimate.

Statistician:

Your interim analysis cutoff will be reached between 2013-08-10 and 2014-03-04, with 95% confidence.

Confidence intervals

Statistically sound.

Difficult to communicate to Big Boss. Initially, we did not communicate confidence interval, only gave point estimate.

Statistician:

Your interim analysis cutoff will be reached between 2013-08-10 and 2014-03-04, with 95% confidence.

Big boss:

Fine.

Confidence intervals

Statistically sound.

Difficult to communicate to Big Boss. Initially, we did not communicate confidence interval, only gave point estimate.

Statistician:

Your interim analysis cutoff will be reached between 2013-08-10 and 2014-03-04, with 95% confidence.

Big boss:

Fine. Give me the date.

Agenda

- Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tai
- Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Small proportion of events - large variability

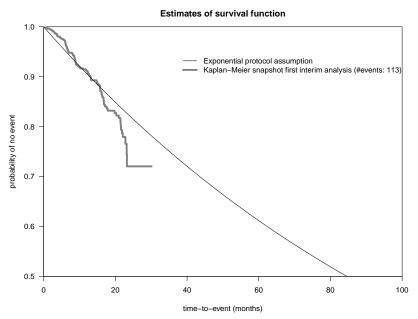
Approx. 1y after initial prediction.

- Data cleaning milestone.
- Based on 193 events became clear we need to shift cutoff.

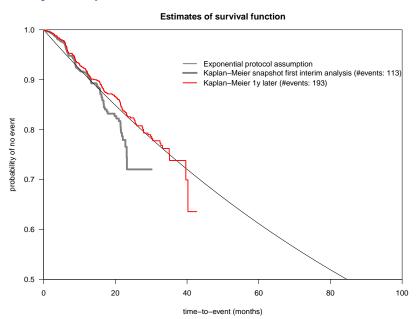
"Root-cause" analysis for 8.0 months shift.

Statistics team explained uncertainty around predictions \Rightarrow estimates of S quite different based on two snapshots.

Variability in Kaplan-Meier estimate over time



Variability in Kaplan-Meier estimate over time



Big Boss comes back

Big Boss:

Seems you had more events in relation to amount of follow-up one year ago? How good was your cleaning back then anyway?

Maybe we had all events, but tumor assessment follow-up for those event-free was not comprehensive?

Compare:

- Data Snapshot 1 of first interim analysis: 3892 tumor assessments.
- Snapshot 2 one year later, cut back to first interim analysis cutoff: 3895 tumor assessments.
- Proportion of tumor assessments available in snapshot 1 if Snapshot 2 is considered "full dataset": 3892 / 3895 = 99.923%.

Message: we had everything back then. Difference in estimates

- either due to variability,
- or early events?

Agenda

- 1 Challenge
- 2 How to predict analysis timepoint in general?
- 3 Hybrid estimate of S: Kaplan-Meier with Exponential tai
- 4 Predicted analysis timepoints
- 5 Uncertainty in event prediction
- 6 Small proportion of events
- Remarks

Remarks

- Hybrid estimate of $S \Rightarrow$ provides estimated value of S beyond last data point.
- Confidence intervals wide
- In fact used prediction based on Exponential MLE. Could simply have used that standard error.
- Typically: uncertainty driven by #events. But here: need to predict event time for those who had no event yet. Uncertainty driven by proportion of events at prediction (113) to patients (1202)? More research needed?
- Sources of variability not considered: drop-out.
- Not discussed, but essential: do such projections only on cleaned data. Otherwise, you likely have most of the events, but no comprehensive follow-up.
- Communication is key. But difficult.

Technical comments

- Once k is selected \Rightarrow automatic method to do event projection \Rightarrow unambiguity.
- Dependence on $k \Rightarrow$ sensitivity analysis.
- Point estimate might not lie in center of bootstrap confidence interval. Use alternative function of bootstrap sample (mode, median).
- R package eventTrack, available internally. Everything implemented from scratch
 likely not optimally efficient.
- Confidence interval: 1202 patients and 1000 bootstrap samples: takes about 3h.
 Depends on T, k.

Thank you for your attention.

References

- Akritas, M. (1986). Bootstrapping the Kaplan-Meier Estimator. J. Amer. Statist. Assoc. 81 1032-1038.
- ▶ Bagiella, E. and Heitjan, D. F. (2001). Predicting analysis times in randomized clinical trials. Stat. Med. 20 2055-2063.
- ► Carpenter, J. and Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19 1141-1164.
- ▶ Di, J., Wang, D., Brashear, H. R., Dragalin, V. and Krams, M. (2016). Continuous event monitoring via a bayesian predictive approach. Pharmaceutical Statistics 15 109-122.
- ▶ Efron. B. (1981). Censored Data and the Bootstrap. J. Amer. Statist. Assoc. 76 312–319.
- Fang. L. and Su. Z. (2011). A hybrid approach to predicting events in clinical trials with time-to-event outcomes. Contemp Clin Trials 32 755-759.

References

- Goodman, M. S., Li, Y. and Tiwari, R. C. (2011). Detecting multiple change points in piecewise constant hazard functions. J Appl Stat 38 2523–2532.
- ▶ Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis. 2nd ed. Springer-Verlag.
- Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials.
 Biometrika 70 659–663.
- Yao, Y. (1986). Maximum likelihood estimation in hazard rate models with a change-point. Comm. Statist. Theory Methods 15 2455–2466.
- Ying, G. S. and Heitjan, D. F. (2008). Weibull prediction of event times in clinical trials. Pharm. Stat. 7 107–120.
- Ying, G. S., Heitjan, D. F. and Chen, T. T. (2004). Nonparametric prediction of event times in randomized clinical trials. *Clin Trials* 1 352–361.

Backup slides.

Piecewise constant hazard

Piecewise constant hazard ⇒ piecewise Exponential density or survival function.

"Bridges" parametric and nonparametric model.

Assume for a given number of change points k, hazard function h, and $0 = \tau_0 < \tau_1 < \ldots < \tau_{k+1} = \infty$:

$$h(t) = egin{cases} \lambda_1 & t \in [0, au_1) \ \lambda_2 & t \in [au_1, au_2) \ dots \ \lambda_{k+1} & t \geq au_k. \end{cases}$$

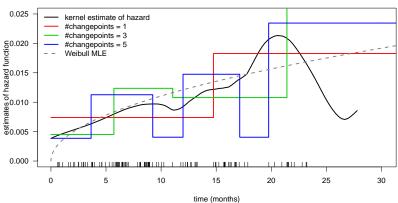
Survival function computed from hazard function:

$$S(t) = \exp(-\int h(t)dt).$$

Estimate $(\lambda_1, \ldots, \lambda_{k+1}, \tau_1, \ldots, \tau_k)$ incl. standard errors using maximum likelihood (backup for details).

Piecewise constant hazard

hazard function



Maximum likelihood for censored data

General log-likelihood function for censored data:

- We observe $(T_i, \delta_i) = (\min\{X_i, C_i\}, \delta_i), i = \dots, n$,
- h_{λ} is the hazard,
- S_{λ} the survival function, both depending on λ .

Then (see e.g. Klein and Moeschberger (2003)):

$$\log(L(\lambda)) = \log\left(\prod_{i=1}^{n} h_{\lambda}(T_{i})^{\delta_{i}} S_{\lambda}(T_{i})\right)$$
$$= \sum_{i=1}^{n} \delta_{i} \log h_{\lambda}(T_{i}) + \sum_{i=1}^{n} \log S_{\lambda}(T_{i}).$$

For a constant hazard: $h_{\lambda}(t) = \lambda$, $S(t) = \exp(-\int \lambda dt) = \exp(-\lambda t)$. So:

$$\log(L(\lambda)) = \sum_{i=1}^{n} \delta_{i} \log \lambda - \lambda \sum_{i=1}^{n} T_{i}.$$

Taking derivative w.r.t. to λ and setting equal to 0 yields $\hat{\lambda} = \sum_{i=1}^n \delta_i / \sum_{i=1}^n T_i$.

MLE in a piecewise model for the hazard with censored data

Generalize to piecewise function \Rightarrow again, general recipe.

Piecewise Exponential: see e.g. references in Goodman et al. (2011). We get:

$$\begin{split} \log L(\lambda_1, \dots, \lambda_{k+1}, \tau_1, \dots, \tau_k) &= \\ &= \sum_{j=1}^{k+1} \{ \text{\#events in } (\tau_{j-1}, \tau_j] \} \log \lambda_j - \sum_{i=1}^n \sum_{j=1}^{k+1} \lambda_j \Big(\min \{ T_i, \tau_j \} - \min \{ T_i, \tau_{j-1} \} \Big). \end{split}$$

Closer look at $\min\{T_i, \tau_j\} - \min\{T_i, \tau_{j-1}\}$:

$$\min\{T_i, \tau_j\} - \min\{T_i, \tau_{j-1}\} = \begin{cases} 0 & \text{if } T_i < \tau_{j-1} \\ T_i - \tau_{j-1} & \text{if } T_i \in [\tau_{j-1}, \tau_j] \\ \tau_j - \tau_{j-1} & \text{if } T_i > \tau_j. \end{cases}$$

$$= (\min\{T_i, \tau_j\} - \tau_{j-1}) \mathbf{1}\{T_i > \tau_{j-1}\}.$$

Observation *i* contributes to estimation in interval $(\tau_{j-1}, \tau_j]$ the observation time in that interval.

MLE in a piecewise model for the hazard with censored data

Assume τ_1, \ldots, τ_k as fixed.

Take derivative of $\log L(\lambda_1, \ldots, \lambda_{k+1}, \tau_1, \ldots, \tau_k)$ w.r.t. to $\lambda_1, \ldots, \lambda_{k+1}$. This gives:

$$\widehat{\lambda}_{j} = \frac{\text{\#events in } (\tau_{j-1}, \tau_{j}]}{\sum_{i=1}^{n} (\min\{T_{i}, \tau_{j}\} - \tau_{j-1}) 1\{T_{i} > \tau_{j-1}\}}.$$

"Usual" MLE for Exponential data, just in interval $(\tau_{i-1}, \tau_i]$.

Plug $\widehat{\lambda}_1, \dots, \widehat{\lambda}_{k+1}$ into log $L(\lambda_1, \dots, \lambda_{k+1}, \tau_1, \dots, \tau_k)$, maximize numerically over τ_1, \ldots, τ_k to get estimates $\widehat{\tau}_1, \ldots, \widehat{\tau}_k$.

Profile-likelihood! Justified since asymptotically, $\widehat{\lambda}_1, \dots, \widehat{\lambda}_{k+1}$ and $\widehat{\tau}_1, \dots, \widehat{\tau}_k$ are independent, i.e. asymptotically, estimates are the same irrespective of whether we maximize separately for τ 's and λ 's, or jointly, see Yao (1986).

Get standard errors of estimates based on standard maximum likelihood theory. At least I do so.

Sequential test

Piecewise constant hazard estimate with k = 5 change points:

$$\widehat{h}(t) = \begin{cases} 0.00386 & t \in [0, 3.6) \\ 0.01127 & t \in [3.6, 9.2) \\ 0.00405 & t \in [9.2, 12.0) \\ 0.01475 & t \in [12.0, 17.1) \\ 0.00404 & t \in [17.1, 19.8) \\ 0.02345 & t \ge 19.8 \end{cases}$$

Choose global $\alpha = 0.05$.

H ₀	α_k	χ^2 -quantile	X_W	<i>p</i> -value	reject H ₀	established change point
$\lambda_1 - \lambda_2$	0.0250000	5.02	15.52	< 0.0001	1	3.6
$\lambda_2 - \lambda_3$	0.0125000	6.24	9.90	0.0017	1	9.2
$\lambda_3 - \lambda_4$	0.0062500	7.48	10.91	0.00095	1	12.0
$\lambda_4 - \lambda_5$	0.0031250	8.73	7.19	0.0073	0	
$\lambda_5 - \lambda_6$	0.0015625	10.00	6.98	0.0083	0	

Final hybrid estimate of S

 $\hat{\tau}$: last established change point.

Estimate piecewise constant hazard assuming k = 1 with change point $\hat{\tau}$. Then:

$$\begin{split} \widehat{S}(t) &= \begin{cases} \widehat{S}_{\mathsf{KM}}(t) & 0 \leq t \leq \widehat{\tau} \\ \widehat{S}_{\mathsf{KM}}(t) \cdot \widehat{S}_{\mathsf{exponential beyond } \widehat{\tau}} & t > \widehat{\tau} \end{cases} \\ &= \begin{cases} \widehat{S}_{\mathsf{KM}}(t) & 0 \leq t \leq \widehat{\tau} \\ \widehat{S}_{\mathsf{KM}}(t) \cdot \exp\left(-\widehat{\lambda}(t-\tau)\right) & t > \widehat{\tau}. \end{cases} \end{split}$$

Plug \hat{S} in generic formulas to compute m.

Confidence intervals width decreases with more events

Question: if we get more events - does width of confidence intervals decrease?

Setup: so far, used data with CCOD of 2012-11-21. Cut data back to CCOD of 2011-11-22 and 2012-05-21.

Results for prediction of second analysis, targeted #events = 248:

	CCOD = 2011/11/22	CCOD = 2012/05/21	CCOD = 2012/11/21
#events at CCOD	29	68	113
predicted timepoint	2014-05-14	2014-05-16	2013-10-13
95% confidence interval	[2013/03/14, 2015/02/15]	[2013/05/26, 2014/01/04]	[2013/08/10, 2014/03/04]
width of CI (months)	23.1	7.3	6.8

Dates get "earlier" with later cutoff date \Rightarrow initial underreporting of events.

Confidence intervals width decreases with more events

Question: if we get more events - does width of confidence intervals decrease?

Setup: so far, used data with CCOD of 2012-11-21. Cut data back to CCOD of 2011-11-22 and 2012-05-21.

Results for prediction of final analysis, targeted #events = 370:

	CCOD = 2011/11/22	CCOD = 2012/05/21	CCOD = 2012/11/21
#events at CCOD	29	68	113
predicted timepoint	2015-10-18	2015-11-30	2014-07-31
95% confidence interval	[2013/12/09, 2018/06/13]	[2014/01/21, 2016/06/02]	[2014/02/28, 2015/06/16]
width of CI (months)	54.1	28.4	15.5

Dates get "earlier" with later cutoff date ⇒ initial underreporting of events.

Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 3.2.2 (2015-08-14)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: reporttools / xtable / fitdistrplus / MASS / eventTrack / muhaz / survival

This document was generated on 2016-04-24 at 21:13:16.