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Challenge

Clinical trial with time-to-event outcome:
@ Portion of patients accrued, some patients still to be accrued.

@ Interim or final analysis after pre-specified number of events.

Questions:
@ When does this number of events happen?
@ Can we assign a confidence interval around that timepoint?

© How to manage the potentially large uncertainty in clinical teams (and higher
up)?

Implications:
@ Resource allocation for running the trial.
@ Gating of other trials, e.g. early phase combinations.

@ Keep investors happy.
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Example

Phase 3 trial with time-to-event primary endpoint (PFS).
All n = 1202 patients accrued: FPI 2010-04-06, LPI 2012-11-06.

First interim analysis:

@ Clinical cutoff date: 2012-11-21.
@ Fevents: 113.

Based on this interim data = predict time when we see
@ 248 events: second interim,

@ 370 events: final analysis.
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Kaplan-Meier estimate based on snapshot
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Agenda

e How to predict analysis timepoint in general?
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Expected number of events at T

S: chosen or estimated survival function.

Expected number of events m at T:

m(S) = Z 1+ Z (event in (tj, T]|no event up to tj) + Z P(event in (aj, T])

heT, JET JEI3

n o+ Z )1{T>t} + Z(l— a,—))l{T>a,-}.

JET JEL3

Sets of patients:
@ 7;: patients who already had event, n.
® 7): patients censored at t;.

@ 73: patients to be recruited at a;.

Need to have value for S at least up to T.

Kaspar Rufibach Event prediction for time-to-event outcomes How to predict analysis timepoint in general? 4 /41



Kaplan-Meier for current data
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How to estimate S?

Nonparametrically via Kaplan-Meier or kernel estimate:
+ No or few assumptions about true S = unbiased.
+ Can account for the “large steps” due to schedule of assessment.
- High variability, especially in tail.

- No extrapolation beyond last event / censoring time.

Fully parametric, e.g. Exponential or Weibull:
+ Efficient, if assumption is true.
+ Accurate estimate of tail, if assumption is true.
+ Can estimate S beyond where we have data.
- Biased if assumption not true.

- Not able to capture particular features of oncological time-to-event

data (inspection intervals).

Hybrid approach: Use nonparametric where we have data, complement with
parametric tail.
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Hybrid estimate

Proposed in Fang and Su (2011). Recipe:
@ Choose total number of change points k.
@ Estimate piecewise Exponential hazard with k change points.

© Test for “significance” of change points.

Borrows strength of nonparametric and parametric approach.
Allows to capture “big steps” due to schedule of assessments.
Change point:
@ Sequential test according to Goodman et al. (2011).
@ To avoid overfitting correct « according to Lan and DeMets (1983).
@ No change point: pure Exponential fit.
@ > 1 change point: Kaplan-Meier prior to selected change point, Exponential tail

fit beyond selected change point.

Alternatively: Bagiella and Heitjan (2001), Ying et al. (2004),
Ying and Heitjan (2008), Di et al. (2016).
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Apply hybrid approach

hazard function
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Kaplan-Meier for current data

Estimates of survival function
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Kaplan-Meier for current data

Estimates of survival function
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Kaplan-Meier for current data

Estimates of survival function
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Kaplan-Meier for current data

Estimates of survival function
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Kaplan-Meier for current data
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Kaplan-Meier for current data

Estimates of survival function
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Kaplan-Meier for current data

Estimates of survival function
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Predicted analysis timepoints

Analysis timepoints using different models
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Predicted analysis timepoints
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Predicted analysis timepoints
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Shift

Communicated prediction: Exponential MLE = synthesis of protocol assumption and

prediction based on hybrid estimate.

Prediction of second interim analysis:

@ Data: 113 events in 1202 patients.

@ Clinical cutoff: 2012-11-21.
@ Initial prediction: 2014-03-01.
@ Actual cutoff: 2014-11-01.

Shift of cutoff: 8.0 months.
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8.0 months!

HOW GOULD YOU BE OFF 8 MONTHS=2

imgflip.com

s.: 8.0 months earlier would certainly have been ok, but 8.0 months later...
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e Uncertainty in event prediction
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Uncertainty in event prediction

Recall formula:

m(S) = n+ Z )1{T>t} + Z(lf a;))l{T>a/}.

JED JEL3
Trial was fully recruited when prediction made = uncertainty = Sampling error in

estimation of S.

Proposal:
@ Bootstrap time-to-event data: sample with replacement from (X;, §;).

@ Re-estimate S via hybrid Exponential model for each bootstrap sample, choose

change point based on sequential test = S estimated fully automatic.
@ Compute analysis timepoint in each sample.

@ Compute quantiles of these analysis timepoints = bootstrap percentile

confidence interval for analysis timepoint.

Validity of bootstrap for right-censored data: Efron (1981), see also Akritas (1986).
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Bootstrapped survival function estimates

Estimates of survival function
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Analysis timepoints

Analysis timepoints using different models
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Analysis timepoints

Analysis timepoints using different models
including 95% bootstrap confidence intervals
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Analysis timepoints

Analysis timepoints using different models
including 95% bootstrap confidence intervals
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Bootstrap distributions

Histograms of analysis timepoints, based on 1000 bootstrap samples
Blue dot: point estimate based on hybrid estimate. CCOD 2012-11-21, 113 events.
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Confidence intervals

Statistically sound.

Difficult to communicate to Big Boss. Initially, we did not communicate confidence
interval, only gave point estimate.

Statistician:

Your interim analysis cutoff will be reached between 2013-08-10 and
2014-03-04, with 95% confidence.
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Confidence intervals

Statistically sound.

Difficult to communicate to Big Boss. Initially, we did not communicate confidence

interval, only gave point estimate.
Statistician:

Your interim analysis cutoff will be reached between 2013-08-10 and
2014-03-04, with 95% confidence.

Big boss:

Fine.
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Confidence intervals

Statistically sound.

Difficult to communicate to Big Boss. Initially, we did not communicate confidence

interval, only gave point estimate.
Statistician:

Your interim analysis cutoff will be reached between 2013-08-10 and
2014-03-04, with 95% confidence.

Big boss:

Fine. Give me the date.
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e Small proportion of events
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Small proportion of events - large variability

Approx. ly after initial prediction.
@ Data cleaning milestone.

@ Based on 193 events became clear we need to shift cutoff.

“Root-cause” analysis for 8.0 months shift.

Statistics team explained uncertainty around predictions = estimates of S quite

different based on two snapshots.
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Variability in Kaplan-Meier estimate over time
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Variability in Kaplan-Meier estimate over time
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Big Boss comes back

Big Boss:
Seems you had more events in relation to amount of follow-up one year

ago? How good was your cleaning back then anyway?

Maybe we had all events, but tumor assessment follow-up for those event-free was not

comprehensive?

Compare:

@ Data Snapshot 1 of first interim analysis: 3892 tumor assessments.

@ Snapshot 2 one year later, cut back to first interim analysis cutoff: 3895 tumor

assessments.

@ Proportion of tumor assessments available in snapshot 1 if Snapshot 2 is
considered “full dataset™: 3892 / 3895 = 99.923%.

Message: we had everything back then. Difference in estimates
@ either due to variability,

@ or early events?
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Agenda

° Remarks
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Remarks

@ Hybrid estimate of S = provides estimated value of S beyond last data point.
@ Confidence intervals wide.

@ In fact used prediction based on Exponential MLE. Could simply have used that

standard error.

@ Typically: uncertainty driven by #events. But here: need to predict event time
for those who had no event yet. Uncertainty driven by proportion of events at
prediction (113) to patients (1202)? More research needed?

@ Sources of variability not considered: drop-out.

@ Not discussed, but essential: do such projections only on cleaned data.
Otherwise, you likely have most of the events, but no comprehensive follow-up.

@ Communication is key. But difficult.
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Technical comments

@ Once k is selected = automatic method to do event projection = unambiguity.
@ Dependence on k = sensitivity analysis.

@ Point estimate might not lie in center of bootstrap confidence interval. Use

alternative function of bootstrap sample (mode, median).

@ R package eventTrack, available internally. Everything implemented from scratch
= likely not optimally efficient.

@ Confidence interval: 1202 patients and 1000 bootstrap samples: takes about 3h.
Depends on T, k.
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Thank you for your attention.

Kaspar Rufibach Event prediction for time-to-event outcomes Remarks 33 /41



References

> Akritas, M. (1986). Bootstrapping the Kaplan-Meier Estimator. J. Amer. Statist. Assoc. 81
1032-1038.

> Bagiella, E. and Heitjan, D. F. (2001). Predicting analysis times in randomized clinical trials.
Stat. Med. 20 2055-2063.

> Carpenter, J. and Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? A
practical guide for medical statisticians. Stat. Med. 19 1141-1164.

> Di, J., Wang, D., Brashear, H. R., Dragalin, V. and Krams, M. (2016). Continuous event
monitoring via a bayesian predictive approach. Pharmaceutical Statistics 15 109-122.

> Efron, B. (1981). Censored Data and the Bootstrap. J. Amer. Statist. Assoc. 76 312-319.

> Fang, L. and Su, Z. (2011). A hybrid approach to predicting events in clinical trials with
time-to-event outcomes. Contemp Clin Trials 32 755-759.

Kaspar Rufibach Event prediction for time-to-event outcomes Remarks 33 /41



References

» Goodman, M. S., Li, Y. and Tiwari, R. C. (2011). Detecting multiple change points in
piecewise constant hazard functions. J Appl/ Stat 38 2523-2532.

> Kilein, J. P. and Moeschberger, M. L. (2003). Survival Analysis. 2nd ed. Springer-Verlag.

> Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials.
Biometrika 70 659-663.

> Yao, Y. (1986). Maximum likelihood estimation in hazard rate models with a change-point.
Comm. Statist. Theory Methods 15 2455-2466.

> Ying, G. S. and Heitjan, D. F. (2008). Weibull prediction of event times in clinical trials.
Pharm. Stat. 7 107-120.

> Ying, G. S., Heitjan, D. F. and Chen, T. T. (2004). Nonparametric prediction of event times in
randomized clinical trials. Clin Trials 1 352-361.

Kaspar Rufibach Event prediction for time-to-event outcomes Remarks 33 /41



Backup slides.
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Piecewise constant hazard

Piecewise constant hazard = piecewise Exponential density or survival function.

“Bridges” parametric and nonparametric model.

Assume for a given number of change points k, hazard function h, and
O=19 <7 <...<Tgq1 = O0:
A1 te [0, 7'1)

A2 te [T1,T2)
h(t) =

)\k+1 t> Tk

Survival function computed from hazard function:

s(t) = exp(—/h(t)dt).

Estimate (A1,..., Akt1,71,...,7k) incl. standard errors using maximum likelihood

(backup for details).
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Piecewise constant hazard

hazard function
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Maximum likelihood for censored data

General log-likelihood function for censored data:
@ We observe (T;,6;) = (min{X;, C;},8;),i=...,n,
@ hy, is the hazard,

@ S, the survival function, both depending on A.

Then (see e.g. Klein and Moeschberger (2003)):

log(L(N) = log([] m(T1)"Sx(T)))

i=1

= Z(S,- log hx(T;) + Z'OgS/\(Ti)-

i=1 i=1
For a constant hazard: hy(t) = X, S(t) = exp(— [ Adt) = exp(—At). So:
n n
log(L(\)) = > dilogA—A>_ T,
i=1 i=1

Taking derivative w.r.t. to A and setting equal to 0 yields \ = S8/ T
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MLE in a piecewise model for the hazard with censored data
Generalize to piecewise function = again, general recipe.

Piecewise Exponential: see e.g. references in Goodman et al. (2011). We get:

log L(A1,. oy Akt1,T1, - -+, Tk) =
k+1 n k+1

= Z{#events in (7j-1,7j]} log A; — Z Z Aj (min{T,-,Tj} —min{T;, Tj_l}).

j=1 i=1 j=1

Closer look at min{T;, 7;} — min{T;, 7j_1}:

0 if T; <711

min{T;, 7} — min{T;, 7j_1} Ti—7_1 if T € [1j-1,7)]
T —Tj—1  if Tj > 7.

(min{T;, 7} —7_1){T; > 7_1}.

Observation i contributes to estimation in interval

(7j—1, 7j] the observation time in that interval.
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MLE in a piecewise model for the hazard with censored data

Assume 71, ..., T as fixed.
Take derivative of log L(A1, ..., Akt1, T1, -5 Tk) W.r.t. to A1, ..., Aky1. This gives:
3 = #events in (7j_1, 7]
;i =

S (min{ T, 7} —7-){Ti > 71}

“Usual” MLE for Exponential data, just in interval (7j_1, 7j].

Plug Xl, .. ,Xk+1 into log L(A1, ..., Ak+1, 71, - - -, Tk), Maximize numerically over
Ti,...,Tk to get estimates 71, ..., 7Tk.
Profile-likelihood! Justified since asymptotically, XL . ,Xk+1 and 71,...,Tk are

independent, i.e. asymptotically, estimates are the same irrespective of whether we

maximize separately for 7's and \'s, or jointly, see Yao (1986).

Get standard errors of estimates based on standard maximum likelihood theory. At
least | do so.
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Sequential test

Piecewise constant hazard estimate with kK = 5 change points:

0.00386 t € [0,3.6)
0.01127 t € [3.6,9.2)
~ 0.00405 t€[9.2,12.0
o - [0:2,12.0)
0.01475 ¢ € [12.0,17.1)
0.00404 ¢ € [17.1,19.8)
0.02345 t>19.8
Choose global oo = 0.05.
Ho ay Xz-quantile Xw p-value reject Hy established change point
A1 — A2 0.0250000 5.02 15.52 < 0.0001 1 3.6
A2 — A3 0.0125000 6.24 9.90 0.0017 1 9.2
A3 — A\g 0.0062500 7.48 10.91 0.00095 1 12.0
Ay — X5 0.0031250 8.73 7.19 0.0073 0
A5 — Xp 0.0015625 10.00 6.98 0.0083 0
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Final hybrid estimate of S

7: last established change point.

Estimate piecewise constant hazard assuming k = 1 with change point 7. Then:

S = Skm(t) 0<t<?

EKM(t) . gexponential beyond 7 t>7T
Skm(t) 0<t<7T
Skm(t) - exr)(—x(t - T)) t> 7.

Plug Sin generic formulas to compute m.
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Confidence intervals width decreases with more events

Question: if we get more events - does width of confidence intervals decrease?

Setup: so far, used data with CCOD of 2012-11-21. Cut data back to CCOD of
2011-11-22 and 2012-05-21.

Results for prediction of second analysis, targeted #events = 248:

CCOD = 2011/11/22 CCOD = 2012/05/21 CCOD = 2012/11/21
#events at CCOD 29 68 113
predicted timepoint 2014-05-14 2014-05-16 2013-10-13
05% confidence interval ~ [2013/03/14,2015/02/15] ~ [2013/05/26,2014/01/04]  [2013/08/10, 2014/03/04]
width of CI (months) 23.1 7.3 6.8

Dates get “earlier” with later cutoff date = initial underreporting of events.
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Confidence intervals width decreases with more events

Question: if we get more events - does width of confidence intervals decrease?

Setup: so far, used data with CCOD of 2012-11-21. Cut data back to CCOD of
2011-11-22 and 2012-05-21.

Results for prediction of final analysis, targeted #events = 370:

CCOD = 2011/11/22 CCOD = 2012/05/21 CCOD = 2012/11/21
#events at CCOD 29 68 113
predicted timepoint 2015-10-18 2015-11-30 2014-07-31
05% confidence interval ~ [2013/12/09,2018/06/13]  [2014/01/21,2016/06/02]  [2014/02/28, 2015/06/16]
width of CI (months) 54.1 28.4 15.5

Dates get “earlier” with later cutoff date = initial underreporting of events.
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Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 3.2.2 (2015-08-14)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: reporttools / xtable / fitdistrplus / MASS / eventTrack / muhaz / survival

This document was generated on 2016-04-24 at 21:13:16.
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