

Choice of priors in rare events meta-analysis

Soheila Aghlmandi¹ Prof. Marcel Zwahlen¹

¹ Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland

Outline :

- The problem
 - Rare events meta-analysis
 - Possible solutions
- Bayesian approach
 - Choice of priors
 - Fixed effect Meta-analysis
 - Random effects Meta-analysis
 - Simulation scenarios
 - Example of Rosiglitazone

Meta-analysis

- Meta-analysis (MA) combines statistical information across related studies
- MA has been widely utilized to combine data from clinical studies in order to summarize treatment efficacy
- Has also been used to assess drug safety. However, because adverse events are typically rare, standard methods may not work well in this setting.

The Problem

- Meta-analysis (MA) on adverse events often include randomized controlled trials (RCTs) in which zero events have been observed in one or both arms
- In MA of rare events RCTs, where computation may involve zero cells, effect measures, like odds ratio (OR) or relative risk (RR), are difficult to calculate
- When the events are rare, but not all zeros, the variance estimates for these methods are not robust which may lead to unreliable statistical inferences

Example: Risoglitazone

- Rosiglitazone was used to treat patients with Type II diabetes melitus
- RCTs of Rosiglitazone were designed to study cardiovascular morbidity and mortality
- For myocardial infarction (MI) out of 48 trials
 - 28 trials had zero in one arm
 - 8 trials with zero in both arms

Part of Rosiglitazone trials used in (Lane, 2013)

Trial	Rosiglitazone		Comparator		- Duration
	Ν	MI	Ν	MI	(weeks)
011	357	2	176	0	24
020	391	2	207	I	52
024	774	I	185	<u> </u>	26
093	213	0	109		26
094	232	I	116	0	26
684	43	0	47	I	52
143	121	I.	124	0	24
211	110	5	114	2	52
284	382	I.	384	0	24
008	284	I.	135	0	48
264	294	0	302	I	52
185	563	2	142	0	32
334	278	2	279	I	52
347	418	2	212	0	24
015	395	2	198	I	24
079	203	I.	106	I	26
080	104	I.	99	2	156
082	212	2	107	0	26
085	138	3	139	I	26
095	196	0	96	0	26
097	122	0	120	I	156

Possible approaches

- Excluding trials with zero events in <u>both arms</u>
 - Which makes it more likely that the magnitude of the pooled treatment effect will be inflated
- Using a continuity correction
 - Allows the log-odds ratio or log-risk ratio to be estimated even when zero events are observed
 - The standard value of continuity correction is k = 0.5
 - Possible biases, specially in trials not having 1 : 1 randomization

Other approaches

- Various statistical methods were proposed for using information from trials with no events
 - (Cai et al., 2010) proposed a method using Poisson regression modeling that uses the idea of conjugacy in the same way as beta-binomial model
 - (Kuss, 2015) used beta-binomial regression methods to make inference about OR, RR and risk difference (RD)
 - (Böhning et al., 2015) proposed a Poisson model for random effects (REs)

Another approach to MA of rare events is to use fully probabilistic (Bayesian) methods

Bayesian approach

• $Y \rightarrow observed \ data$

 $\theta \rightarrow unknown parameter(s)$

- Prior $\rightarrow p(\theta)$
- Likelihood $\rightarrow p(Y|\theta)$
- Posterior $\rightarrow p(\theta|Y)$

Posterior \propto **Prior** \times **Likelihood**

 $p(\theta|Y) \propto p(\theta) \times p(Y|\theta)$

Formulation for Bayesian methods

- Our outcome of interest is binary, so for each study *i* control group *c* and treatment group *t*
 - $x_{ic} \sim Binomial(p_{ic}, n_{ic})$
 - $x_{it} \sim Binomial(p_{it}, n_{it})$ where i = 1, 2, ..., n
- Odds ratio (OR) is our target effect measure

•
$$OR_i = \left(\frac{p_{it}}{1-p_{it}} / \frac{p_{ic}}{1-p_{ic}}\right)$$

- For FE MA, Assuming a common OR across studies in a Bayesian framework
 - $logit(p_{it}) = log(OR) + logit(p_{ic})$ Where $logit(p_{it}) = log(\frac{p_{it}}{1-p_{it}})$
- For REs MA
 - $\log(OR_i) \sim normal(\log(OR), \tau)$
 - τ is statistical heterogeneity

Prior distribution for $log(OR) \sim Normal(0, 10)$

Prior distributions

- In an MA context, prior distributions could include expert beliefs of health professionals
- Priors can be derived from information from studies not explicitly included in the MA
- Necessity to explore sensitivity to choice of prior distributions
 - Risk in control group (*p*_{*ic*})
 - heterogeneity (τ) , in case of REs MA

• For <u>FE</u> models we used several sets of priors on risk of control group (p_{ic})

Parameter	Prior distribution	
a. p _{ic}	beta(1,1)	
	<i>beta</i> (0.5, 0.5)	
a. logit(p _{ic})	unif(-10,10)	
	<i>normal</i> (0,10)	
	<i>normal</i> (0,100)	
a. $logit(p_{ic})^*$	$normal(\mu, \sigma)$ where	
ounded away from zero	$(0.0025, 0.048) \ \mu \sim unif(-6, -3)$	
	$\sigma \sim unif(0,1)$	
* hierarchical struct	ure on $logit(p_{ic}), i = 1, 2,, n$	

Figure I. Histograms of different priors for $logit(p_{ic})$

- In <u>REs</u> models
 - For **7**

Table II. List of prior distributions for τ						
Parameter	Prior distribution	Mean				
τ	exp(2)	0.5				
	unif(0,2)	1				
	half-normal	0.5				

- For *pic*
 - $logit(p_{ic}) \sim Normal(0, 10)$
 - $logit(p_{ic}) \sim Normal(0, 100)$
 - $logit(p_{ic}) \sim$ Hierarchical

Table III. Parameter values used in the simulation of MA data sets

FE scenarios

$\log(OR)$	0 or 0.69				
Number of patients in treatment group (n_{it})	[20, 60]				
Risk of control group (p_{ic})	[0.001, 0.04]				
Number of trials in each MA	10, 20 or 50				
RE scenarios					
$\log(OR_i)^*$					
$\log(OR)$	0 or 0.69				
Random effects standard deviation (τ)	0.2 or 0.5				
Number of patients in treatment group (n_{it})	[10, 60]				
Risk of control group (p_{ic})	[0.001, 0.035]				
Number of trials in each MA	20 or 50				
Both FE & REs scenarios					
Ratio of group sizes ^{**}	1:1, 1:2 or 1:4				
Number of simulated MA data sets	1000				
* follows a normal distribution with specified characteristics					
We assigned treatment vs. control group for the ratio of group sizes					

Simulation steps

R :

- Data simulation (144)
- Linking R to JAGS
- Collect JAGS result
 - MeanlogOR(s)
 - 95% credible interval(s)

JAGS :

- MCMC
 - Number of Markov chians = 4
 - Number of iterations = 15000
 - Length of burn in = 5000

We used result of JAGS to calculate

- 95% coverage probability
- bias = True log(OR) median log(OR)

Results of FE Bayesian methods

Figure II. Results for FE Bayesian methods -- DL = FALSE

Results of REs Bayesian methods

Figure III. Results for REs methods for log(OR) = 0 with different SDs -- DL=FALSE

Figure IV. Results for REs methods for log(OR) = 0.69 with different SDs -- DL=FALSE

22

Summary of the results I

- When we used different prior distributions for metaanalytical approaches, we found that our <u>Bayesian</u> <u>methods</u> returned similar interval statements for log(OR), and matched the <u>MH</u> calculation method
- For FE
 - The conjugate **Beta** distributions calculation method did not provide good coverage or a precise mean estimate
 - Weakly informative and hierarchical priors provided coverage similar to the <u>MH without CCs</u>

Summary of the results II

- For REs
 - In summary, results showed that <u>uniform</u> is a poor choice to account for τ in REs MA due to high bias from true log(OR) and low 95% coverage [results not shown today]
 - For τ , halfnormal and exp(2) with mean 0.5 performed very similar in all aspects

For both FE & REs Bayesian methods in different scenarios, results were almost identical when studies with no events were <u>included</u> or <u>excluded</u>.

Illustration : Risoglitazone Case

Figure V. Forest plot of an MA of Rosiglitazone for MI

Conclusion

- Our results demonstrate that calculations of coverage are very sensitive to the specification of the prior for p_{ic} and for τ
- In MA of rare events, the performance of the Bayesian CIs and log(OR) were not affected by excluding studies with no events in both arms
- In MA of rare events, one might be really carful interpreting the result since the results are highly method dependent

Thank you

References :

- 1. M. J. Braudburn, J. J. Deeks and J. A. Berlin, Much ado about nothing, SIM. No 26, (2007), 53–77.
- 2. M. J. Sweeting, A. J. Sutton and P. C. Lambert, What to add to nothing?, SIM. No 23, (2004), 1351–1375.
- 3. P. W. Lane, Meta-analysis of incidence of rare events, J. SMMR. (2011), 1–16.
- S. E. Nissen, K. Wolski, Effect of Rosiglitazone on the risk of Myocardial infarction and Death from Cardiovascular causes, NEJM. (2007), No. 24, 2457–2471.
- 5. Chen, Ding-Geng, Applied Meta-Analysis with R (Chapman & Hall/CRC Biostatistics Series).
- 6. O. Kuss, A. Hoyer, A. Solms, Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas, SIM, No 33, (2013), 17-30