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Meta-analysis 

• Meta-analysis (MA) combines statistical 

information across related studies 

• MA has been widely utilized to combine data 

from clinical studies in order to summarize 

treatment efficacy 

• Has also been used to assess drug safety. 

However, because adverse events are 

typically rare, standard methods may not 

work well in this setting. 
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The Problem 

• Meta-analysis (MA) on adverse events often 
include randomized controlled trials (RCTs) in 
which zero events have been observed in one or 
both arms 

• In MA of rare events RCTs, where computation 
may involve zero cells, effect measures, like 
odds ratio (OR) or relative risk (RR), are 
difficult to calculate 

• When the events are rare, but not all zeros, the 
variance estimates for these methods are not 
robust which may lead to unreliable statistical 
inferences 
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Example: Risoglitazone 

• Rosiglitazone was used to treat patients with 

Type II diabetes melitus 

• RCTs of Rosiglitazone were designed to study 

cardiovascular morbidity and mortality  

• For myocardial infarction (MI) out of 48 trials 

• 28 trials had zero in one arm 

• 8 trials with zero in both arms 
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Part of Rosiglitazone trials used in (Lane, 2013)  
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Possible approaches 

• Excluding trials with zero events in both arms  

• Which makes it more likely that the magnitude of the 

pooled treatment effect will be inflated  

• Using a continuity correction  

• Allows the log-odds ratio or log-risk ratio to be estimated 

even when zero events are observed 

• The standard value of continuity correction is k = 0.5 

• Possible biases, specially in trials not having 1 : 1 

randomization 
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Other approaches 
• Various statistical methods were proposed for 

using information from trials with no events 

• (Cai et al., 2010) proposed a method using Poisson 
regression modeling that uses the idea of conjugacy in 
the same way as beta-binomial model  

• (Kuss, 2015) used beta-binomial regression methods to 
make inference about OR, RR and risk difference (RD) 

• (Böhning et al., 2015) proposed a Poisson model for 
random effects (REs) 
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Another approach to MA of rare events is to use 

fully probabilistic (Bayesian) methods 



Bayesian approach 

• 𝑌 → 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎 

                                         𝜃 → 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑠) 

• 𝑃𝑟𝑖𝑜𝑟 → 𝑝(𝜃)  

• 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 → 𝑝 𝑌|𝜃  

• 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 → 𝑝(𝜃|𝑌) 

 

𝑷𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝  𝑷𝒓𝒊𝒐𝒓 ×  𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 

  
𝑝(𝜃|𝑌) ∝ 𝑝(𝜃) × 𝑝 𝑌|𝜃  
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Formulation for Bayesian methods 

• Our outcome of interest is binary, so for each 

study i control group c and treatment group t 

• 𝑥𝑖𝑐 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑐, 𝑛𝑖𝑐)  

• 𝑥𝑖𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑡, 𝑛𝑖𝑡)  where 𝑖 = 1,2, … , 𝑛    

• Odds ratio (OR) is our target effect measure 

• 𝑂𝑅𝑖 = (
𝑝𝑖𝑡

1−𝑝𝑖𝑡
 /

𝑝𝑖𝑐

1−𝑝𝑖𝑐
 ) 

 
10 



• For FE MA, Assuming a common OR across 
studies in a Bayesian framework 

• 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑡 = 𝑙𝑜𝑔(OR) + 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑐  

Where 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑡 = log(
𝑝𝑖𝑡

1−𝑝𝑖𝑡
 ) 

• For REs MA  

• log 𝑂𝑅𝑖  ~ 𝑛𝑜𝑟𝑚𝑎𝑙 log 𝑂𝑅 , 𝜏  

• 𝜏 is statistical heterogeneity 

           Prior distribution for  

                   𝑙𝑜𝑔(OR) ~ Normal(0, 10) 
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Prior distributions 

• In an MA context, prior distributions could 

include expert beliefs of health professionals 

• Priors can be derived from information from 

studies not explicitly included in the MA  

• Necessity to explore sensitivity to choice of 

prior distributions 

• Risk in control group 𝑝𝑖𝑐  

• heterogeneity (𝜏), in case of REs MA 

 

 
12 



• For FE models we used several sets of priors on risk 

of control group 𝑝𝑖𝑐  
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Table I. List of prior distributions for 𝑝𝑖𝑐 

Parameter Prior distribution 

a. 𝒑𝒊𝒄 𝑏𝑒𝑡𝑎(1, 1) 

  𝑏𝑒𝑡𝑎(0.5, 0.5)    

a. 𝒍𝒐𝒈𝒊𝒕 𝒑𝒊𝒄  𝑢𝑛𝑖𝑓(−10, 10) 

  𝑛𝑜𝑟𝑚𝑎𝑙(0, 10) 

  𝑛𝑜𝑟𝑚𝑎𝑙(0, 100)   

a.  𝒍𝒐𝒈𝒊𝒕 𝒑𝒊𝒄 * 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)   where 

                 𝜇 ~ 𝑢𝑛𝑖𝑓(−6, −3)  

         𝜎 ~ 𝑢𝑛𝑖𝑓(0, 1) 
* hierarchical structure on 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑐 , 𝑖 = 1,2, … , 𝑛 

𝜇 is bounded away from zero (0.0025, 0.048) 



Figure I. Histograms of different priors for 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑐  
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• In REs models  

• For 𝜏 

 

 

• For 𝑝𝑖𝑐 

• 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑐  ~ Normal(0, 10)  

• 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑐  ~ Normal(0, 100) 

• 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑐  ~ Hierarchical 
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Table II. List of prior distributions for 𝜏 

Parameter Prior distribution Mean 

   𝜏 𝑒𝑥𝑝(2) 0.5 

  𝑢𝑛𝑖𝑓(0, 2) 1 
  half-normal 0.5 
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Table III. Parameter values used in the simulation of MA data sets 

FE scenarios   

   log 𝑂𝑅  0 or 0.69 

   Number of patients in treatment group (𝑛𝑖𝑡) [20, 60] 

   Risk of control group (𝑝𝑖𝑐) [0.001, 0.04] 

   Number of trials in each MA 10, 20 or 50 

RE scenarios   

   log 𝑂𝑅𝑖
*   

        log 𝑂𝑅  0 or 0.69 

        Random effects standard deviation (𝜏) 0.2 or 0.5 

   Number of patients in treatment group (𝑛𝑖𝑡) [10, 60] 

   Risk of control group (𝑝𝑖𝑐) [0.001, 0.035] 

   Number of trials in each MA 20 or 50 

Both FE & REs scenarios   

   Ratio of group sizes** 1:1, 1:2 or 1:4  

   Number of simulated MA data sets 1000 
* follows a normal distribution with specified characteristics 
** We assigned treatment vs. control group for the ratio of group sizes 



Simulation steps 

R : 

• MCMC 

• Number of Markov chians = 4 

• Number of iterations = 15000 

• Length of burn in = 5000 

JAGS : 

• Data simulation (144) 

• Linking R to JAGS 

• Collect JAGS result 

• MeanlogOR(s) 

• 95% credible interval(s) 
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We used result of JAGS to calculate  

• 95% coverage probability  

•  bias = True log(OR) – median log(OR)  



Results of FE 

Bayesian methods 
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Figure II. Results for FE Bayesian methods -- DL = FALSE  
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Results of REs 

Bayesian methods 
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Figure III. Results for REs methods for log(OR) = 0 with different SDs -- DL=FALSE  
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Figure IV. Results for REs methods for log(OR) = 0.69 with different SDs -- DL=FALSE  



Summary of the results I 

• When we used different prior distributions for meta-

analytical approaches, we found that our Bayesian 

methods returned similar interval statements for 

log(OR), and matched the MH calculation method  

• For FE 

• The conjugate Beta distributions calculation method did 

not provide good coverage or a precise mean estimate 

• Weakly informative and hierarchical priors provided 

coverage similar to the MH without CCs  
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Summary of the results II 

• For REs  

• In summary, results showed that uniform is a 

poor choice to account for 𝜏 in REs MA due to 

high bias from true log(OR) and low 95% 

coverage [results not shown today] 

• For 𝜏 , halfnormal and exp(2) with mean 0.5 

performed very similar in all aspects  

For both FE & REs Bayesian methods in different 

scenarios, results were almost identical when 

studies with no events were included or excluded.  
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Illustration : Risoglitazone Case 
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Figure V. Forest plot of an MA of Rosiglitazone for MI 



Conclusion 

• Our results demonstrate that calculations of 

coverage are very sensitive to the specification 

of the prior for 𝑝𝑖𝑐 and for 𝜏  

• In MA of rare events, the performance of the 

Bayesian CIs and log(OR) were not affected by 

excluding studies with no events in both arms 

• In MA of rare events, one might be really 

carful interpreting the result since the results 

are highly method dependent 
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Thank you   
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