

### Estimating survival benefit for health technology assessment New challenges presented by immuno-oncology treatments?

BBS / PSI 1-Day Scientific Meeting: Empower the immune system to fight cancer June 15, 2017

Dr Nicholas Latimer, Senior Research Fellow, NIHR Post-doctoral Fellow, University of Sheffield, Sheffield, UK

Acknowledgements: Andrew Briggs and Scott Ramsey have allowed me to use

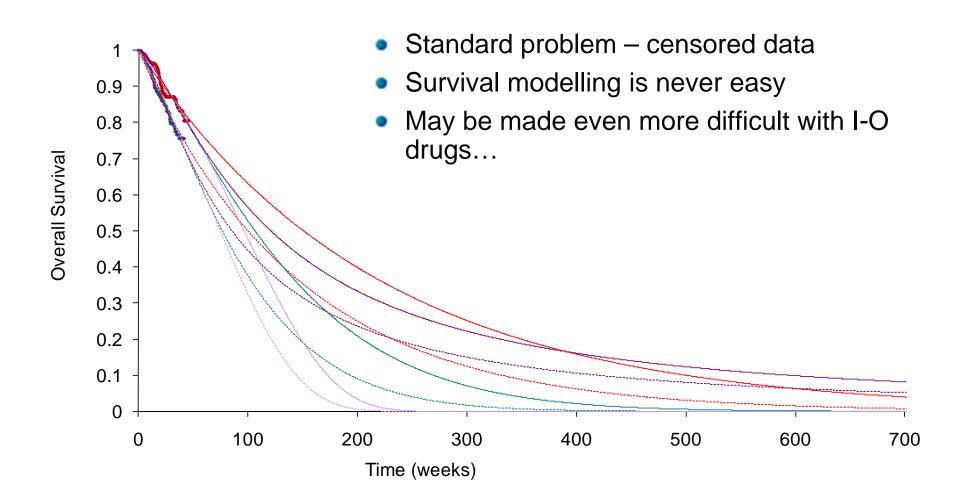


### Plan

- 1. Survival modelling for HTA
- 2. Issues raised by immuno-oncology
- 3. Possible solutions (and limitations)
  - Flexible parametric models
  - Mixture models
  - Response-based models
- 4. Summary



# HTA – objectives


Allocation of scarce healthcare resources

Decisions need to be made based on treating the entire (eligible) disease population

Need to estimate mean survival advantage (not median)



### HTA – objectives





# The issue

- New I-O drug approvals increasingly characterised by:
  - Less mature data
  - Often without a control group
  - Intermediate endpoints rather than overall survival

#### AND

- Several agents appear to result in difficult-to-model survival curves
  - I-O drugs may be associated with a delayed effect, long-term survivors (a "cure" proportion) and therefore complex hazard functions with a non-proportional treatment effect



### The issue

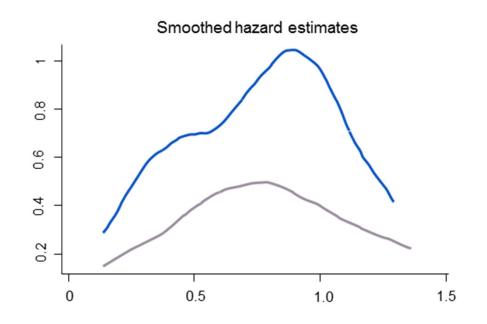
- Survival modelling is never straightforward, for any drug for any disease where we have to extrapolate into the future
  - Now we have fewer data and treatments that have increasingly complex effects

How do we deal with this?

Do we need new methods?

(Should we be using better methods anyway)?

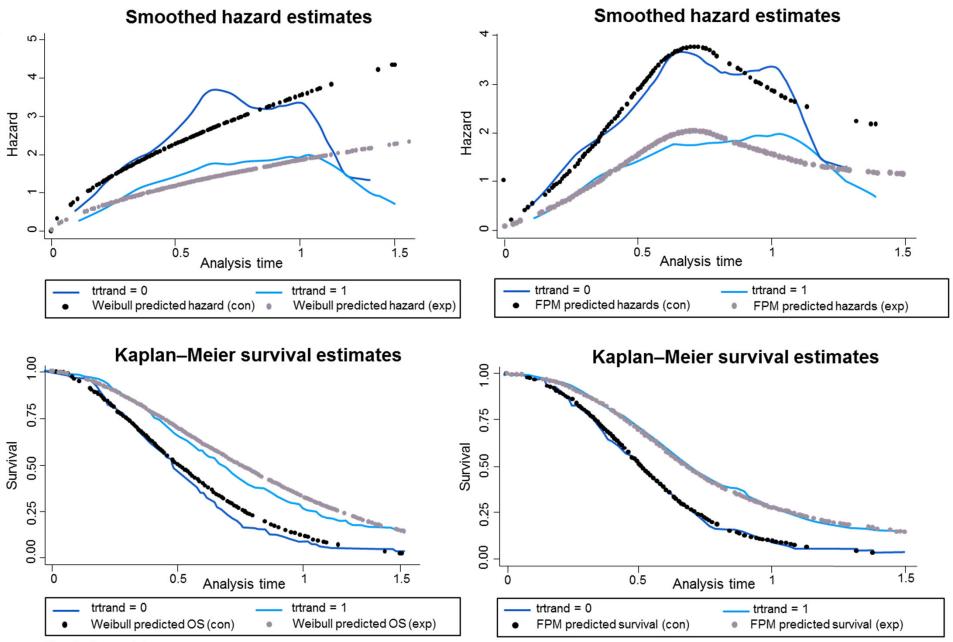



### **Standard methods**

- In oncology HTAs standard parametric models are usually used to estimate long-term survival (e.g. Weibull, exponential, Gompertz...)
- These can be fitted separately to treatment arms to address non-PH
- But, they are also limited with regards to the hazards that they can represent (constant, monotonically increasing, monotonically decreasing...)



### **Standard methods**


- I-O drugs may be associated with a complex hazard function
- Standard parametric models may not provide a good fit
- Survival estimates may be poor
- → What can we do?





## **Solutions - FPMs**

- Flexible parametric models use restricted cubic splines to estimate the shape of the log-cumulative hazard function
- Knots are positioned, usually placed at centiles of the distribution of log survival times, and sections of the curve separated by these knots are fitted
- FPMs can accurately reflect complex hazard functions, with turning points (Royston and Parmar, 2002; Rutherford, Crowther and Lambert, 2015)...



Speaker's own data



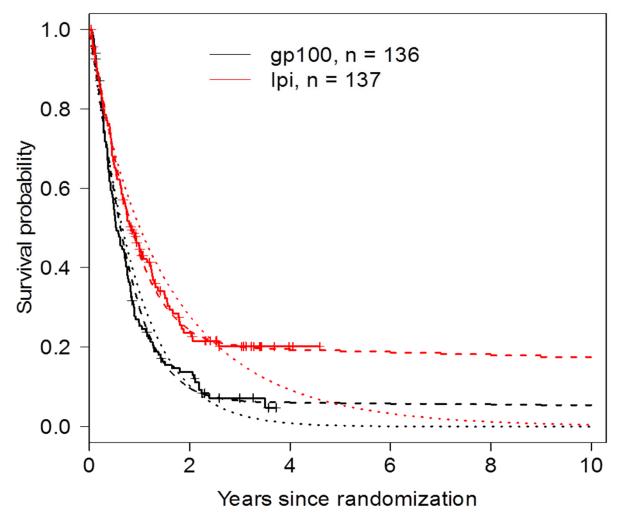
## **Limitations - FPMs**

- The FPM extrapolates beyond the data using only the final segment of the curve. This may or may not be appropriate for achieving accurate projections
- How many knots to choose?
- "Joining the dots"



## **Solutions – Cure models**

#### Parametric cure models


- Sometimes it might appear that a % of patients have been "cured"
- Model is used to:
  - Estimate probability that a patient is cured
  - Predict survival of patients who are not cured
- Survival distribution for cured patients is based on background mortality from external data

Population survival = p<sub>cured</sub>\*survival<sub>cured</sub> + (1-p<sub>cured</sub>)\*survival<sub>uncured</sub>

→ Can represent hazard functions with turning points

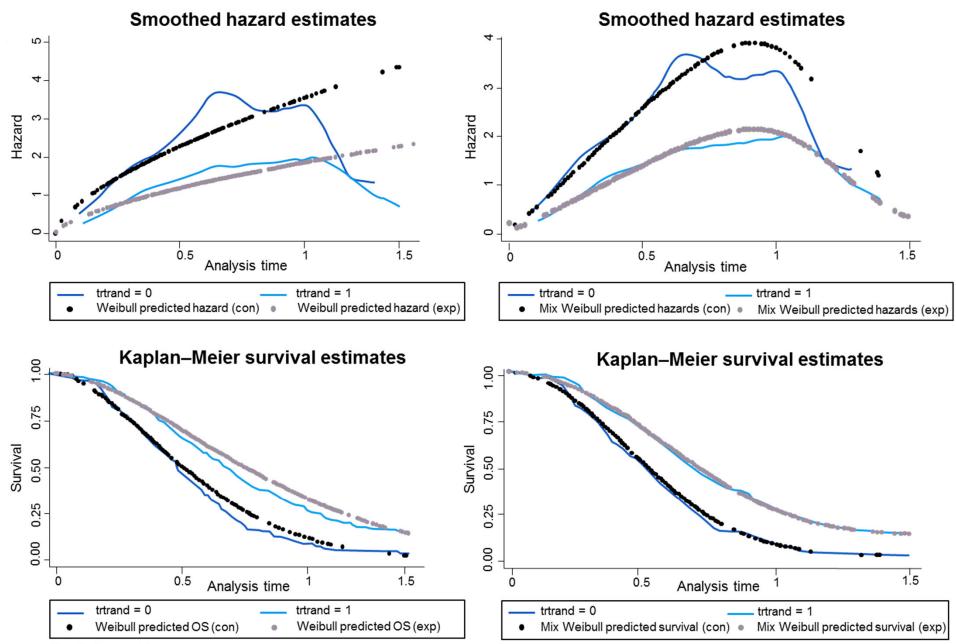


### **Solutions – Cure models**



- Othus et al. (2017)
- Standard Weibull model compared to mixture cure model




# **Solutions – Mixture models**

#### Parametric mixture models

- May be some evidence of different survival distributions within data, but not necessarily a cure
- Parametric mixture models can be used to model with two (or more) distinct distributions (Lambert, 2007)
- E.g. mixture Weibull model:

 $s_0(t) = p \exp(-\lambda_1 t^{\gamma_1}) + (1-p) \exp(-\lambda_2 t^{\gamma_2})$ 

- *p* is the first mixture, (1-*p*) is the second mixture
- → Can represent hazard functions with turning points

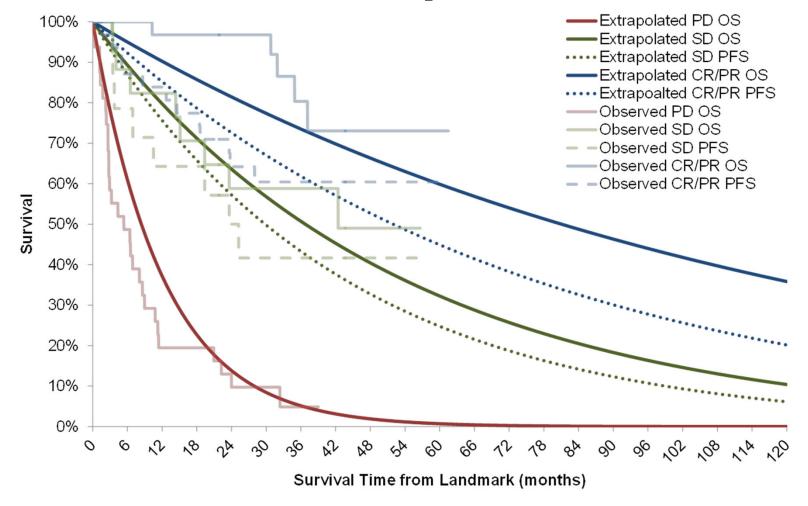


Speaker's own data



# Limitations – Mix/cure models

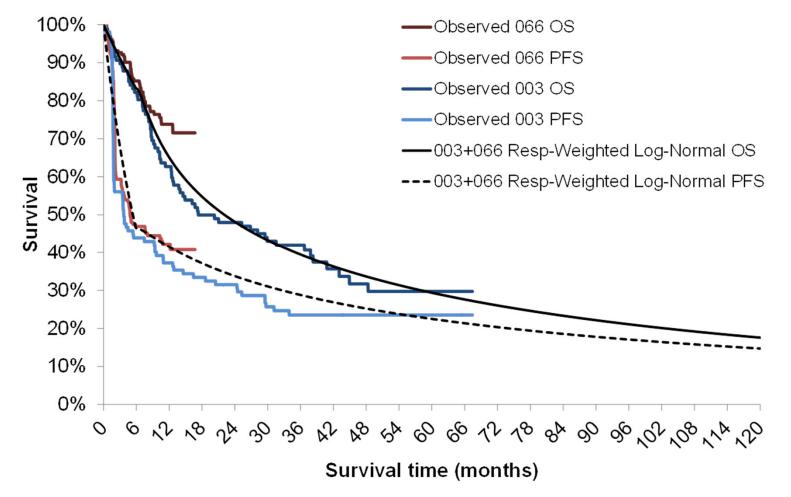
- Cure/mixture models have a nice rationale, but...
  - Can we prove that an assumption of a cure is reasonable?
  - Can we estimate the cure fraction based on short-term data?
  - How many mixes are there / do we need?
  - Do we fit cure models to PFS and OS? What if we get different cure fractions?
  - Do we fit from time 0? Cured at randomisation?
  - Are long-term hazards reasonable in the mixture?




# **Solutions – Response models**

- Model based upon response categories:
  - 1. Select a landmark time-point, categorise patients into response groups
  - 2. Fit parametric survival models for response groups from landmark point
  - 3. Weight the response curves by the observed response distribution at the landmark time-point
- → Can represent hazard functions with turning points




### **Solutions – Response models**



Hodi FS et al. Presentation at the Society for Melanoma Research Congress, Zurich, Switzerland, 13–17 November, 2014



### **Solutions – Response models**



Hodi FS et al. Presentation at the Society for Melanoma Research Congress, Zurich, Switzerland, 13–17 November, 2014



# Limitations – Response models

- Fits the language used about I-O treatments: some patients don't benefit, but those that do benefit very substantially. But...
  - Are response measures adequate?
    - Pseudo-progression
    - Reliably distinguish patient prognosis, treatment effect only mediated through response
  - Which landmark time-point is suitable?
    - Delayed responses Vs reduced advantages if wait too long
  - Are standard parametric models appropriate within response groups – are long-term hazards appropriate?



# Summary

- I-O drugs have encouraged increased attention on survival modelling techniques in HTA
  - This was probably needed anyway
- More complex methods are available no need to stick to commonly used approaches
- Are decision makers equipped to review these methods?
- Can we assume that the "plateau" is there, without seeing it in an RCT?
- The more complex models have limitations external validity remains crucial



### References

- Royston, P. and Parmar, M.K.B. Flexible proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 2002; 21:2175-2197
- Rutherford MJ, Crowther MJ and Lambert PC. The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. Journal of Statistical Computation and Simulation 2015;85;4:777-793
- Lambert P. Modeling of the cure fraction in survival studies. The Stata Journal 2007 ;7;3:351-375
- Chen T. Statistical issues and challenges in immune-oncology. Journal for ImmunoTherapy of Cancer 2013;1:18
- Chen T. Predicting analysis times in randomized clinical trials with cancer immunotherapy. BMC Medical Research Methodology 2016;16;12
- Othus M, Bansal A, Koepl L, Wagner S, Ramsey S. Accounting for cured patients in costeffectiveness analysis . Value in Health 2017;20:705–709
- Paly VF, Baker T, Gilloteau I, Orsini L, Briggs A. Long-term survival extrapolation for nivolumab (anti-PD-1) in advanced melanoma from trial data: A response-stratified approach. 11<sup>th</sup> EADO Congress and 8<sup>th</sup> World meeting of interdisciplinary melanoma/skin cancer centers
- Latimer N, Ramsey S, Briggs A. Cost–effectiveness models for innovative oncology treatments: How different methodological approaches can be used to estimate the value of novel therapies. ISPOR, Boston, US, 2017