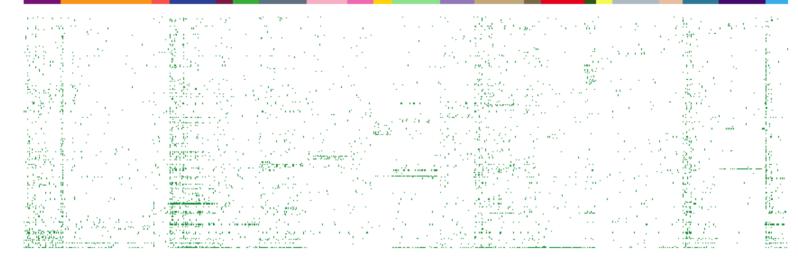


Mutational interactions define novel cancer subgroups Can they inform precision oncology?

Jack Kuipers, ETH Zürich 4th June 2019 Thomas Thurnherr, Giusi Moffa, Polina Suter, Jonas Behr Ryan Goosen, Gerhard Christofori & Niko Beerenwinkel

TCGA mutations

genes

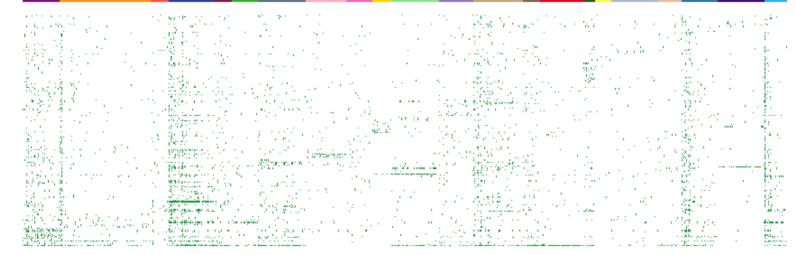


samples

- characterize mutation patterns within and across cancer types
 - correlations and interactions
 - generative model

TCGA mutations

genes

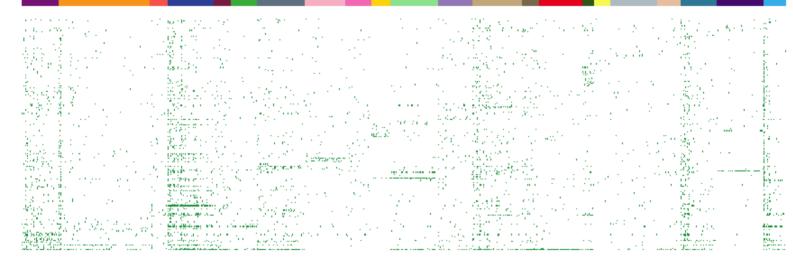


- characterize mutation patterns within and across cancer types
 - correlations and interactions
 - generative model

- cluster patient samples by mutation profiles
 - survival prediction
 - precision treatment?

TCGA data

genes



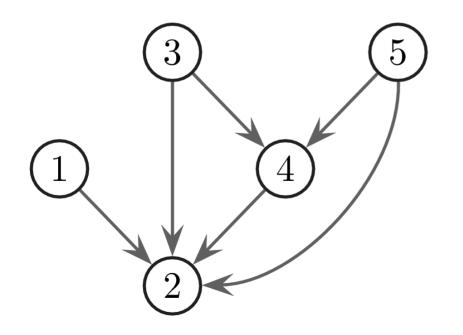
- characterize mutation patterns within and across cancer types
 - correlations and interactions
 - generative model

- 22 cancer types with more than 100 samples
 - 8198 patients
- 16 most significantly mutated genes per cancer type MutSig2CV
 - 201 genes

Bayesian networks

Underlying structure comprised of DAGs Directed Acyclic Graphs

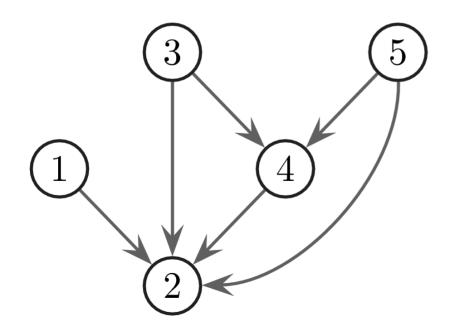
- random variable on each node
 - regressed on parents
- \cdot edges encode conditional dependencies



Bayesian networks

Underlying structure comprised of DAGs Directed Acyclic Graphs

- random variable on each node
 regressed on parents
- edges encode conditional dependencies



DAGs can be:

• generated recursively Robinson, 1970, 1973

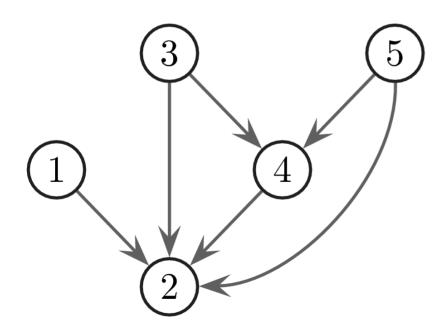
sampled uniformly

Kuipers and Moffa, Stats Comp 2015

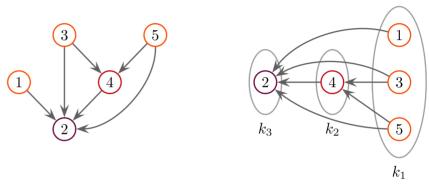
Partition MCMC

Underlying structure comprised of DAGs

- random variable on each node
 regressed on parents
- \cdot edges encode conditional dependencies



Rearrange DAG as ordered partition



Build MCMC on space of partitions

- · join or break elements
- \cdot swap nodes between them

Unbiased sampling

Kuipers and Moffa, JASA 2017

Larger Bayesian network inference

Speed up inference for large DAGs by filtering parents arXiv:1803.07859

filter with independence tests

PC algorithm, Spirtes, Glymour and Scheines, 2000

- \cdot allow one additional parent
- MCMC search and score

Example

- · 20 nodes
- · 200 observations
- 80 repetitions
- 1.4 expected number of parents

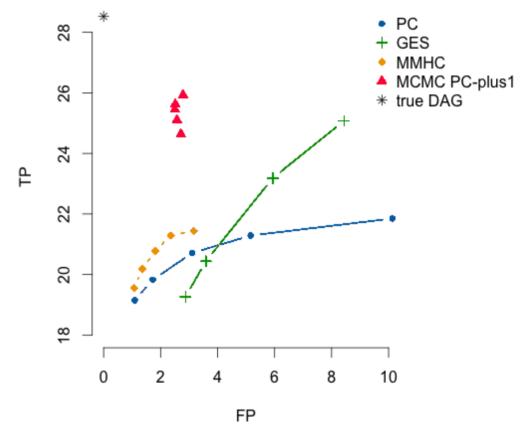
Larger Bayesian network inference

Speed up inference for large DAGs by filtering parents arXiv:1803.07859

- filter with independence tests PC algorithm, Spirtes, Glymour and Scheines, 2000
- · allow one additional parent
- MCMC search and score

Example

- · 20 nodes
- · 200 observations
- 80 repetitions
- 1.4 expected number of parents



GES: Greedy equivalent search Chickering, JMLR 2002 MMHC: Max-min hill climbing Tsmardinos, Brown and Aliferis, ML 2006

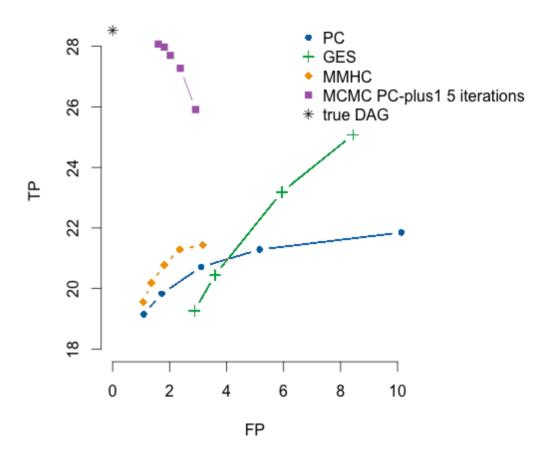
Iterative improvement

Speed up inference for large DAGs by filtering parents arXiv:1803.07859

- filter with independence tests PC algorithm, Spirtes, Glymour and Scheines, 2000
- · allow one additional parent
- · iteratively improve search space

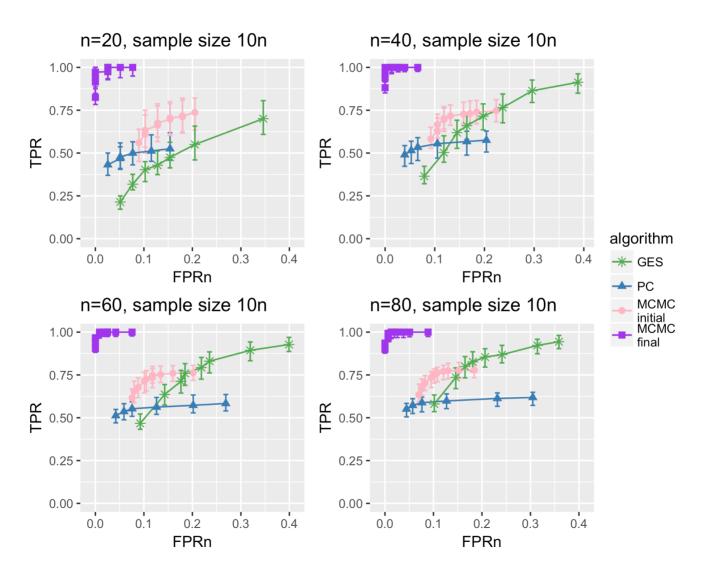
Example

- · 20 nodes
- · 200 observations
- 80 repetitions
- 1.4 expected number of parents



GES: Greedy equivalent search Chickering, JMLR 2002 MMHC: Max-min hill climbing Tsmardinos, Brown and Aliferis, ML 2006

Larger DAGs



8/20

BDe score

Bayesian Dirichlet equivalent (BDe) score Heckerman and Geiger, UAI 1995

Binary case for DAG ${\cal G}$

- \cdot node *X* with *m* parents *Y*
- \cdot each state of Y has parameter $heta_Y$

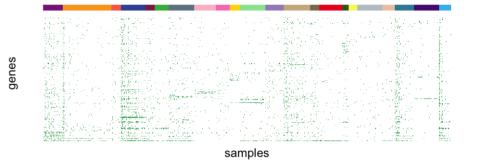
 $P(X = 1 | \mathbf{Y}) = \theta_{\mathbf{Y}}$

 \cdot beta prior on heta with hyperparameter

$$\alpha = \beta = \frac{\chi}{2^m}$$

BDe metric is marginal likelihood P(D|G)

BDe score is posterior P(G|D)



For each cancer type

- \cdot sampled 100 DAGs from posterior
- \cdot edge prior from STRING

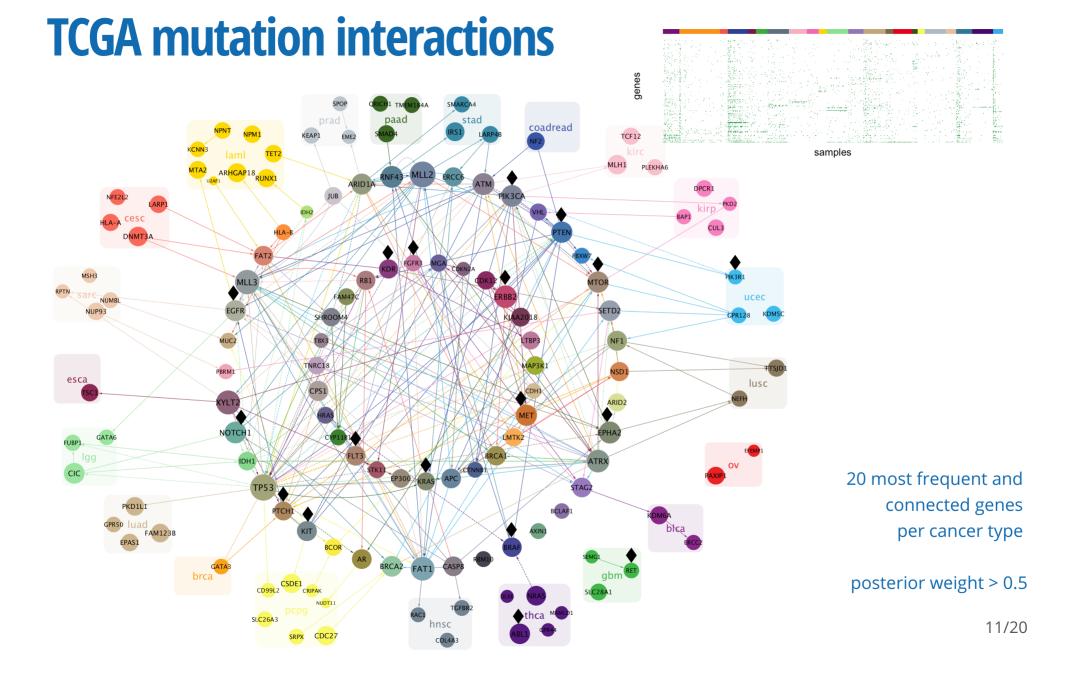
For each cancer type

- sampled 100 DAGs from posterior
- \cdot edge prior from STRING

To visualise networks:

- Select edges
 - posterior weight > 0.5
- Select 20 most frequent and connected genes
 - frequency × edges
- Extract subnetwork
 - colour edges by cancer type
 - overlay

genes



For each cancer type

- sampled 100 DAGs from posterior
- \cdot edge prior from STRING

For each cancer type

- sampled 100 DAGs from posterior
- \cdot edge prior from STRING

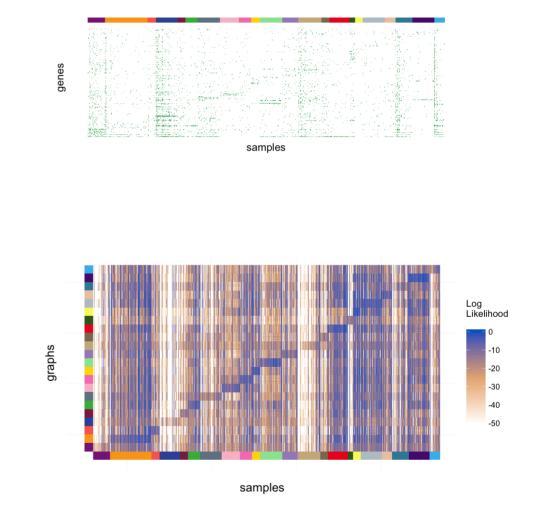
To visualise heterogeneity:

• Fit each patient sample to each graph

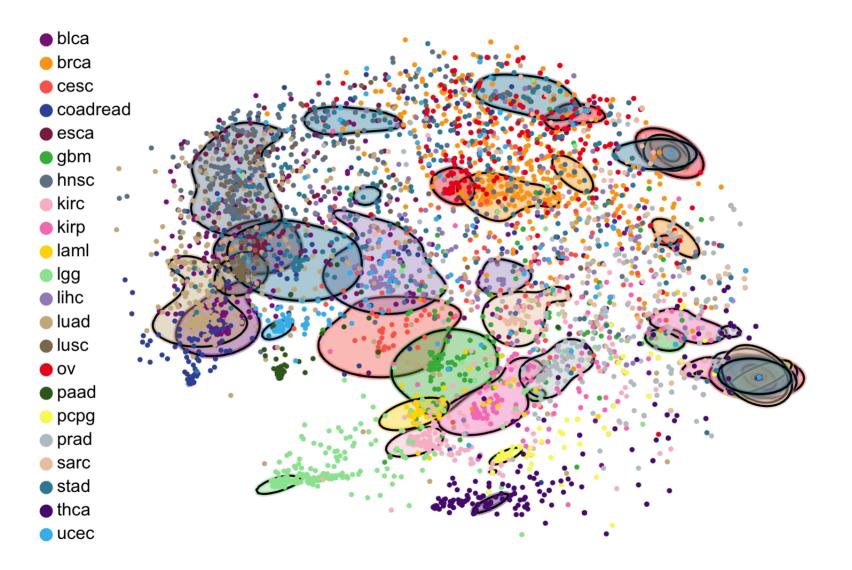
 $P(D_i|G_j, \bar{\theta}_j)$

using posterior means $ar{ heta}$

- Calculate Jenson-Shannon divergence between columns
 - distance between patient samples
 - project to 2D



Inter-patient heterogeneity



EM MAP mixture model clustering

Weight patient samples into *k* groups

- \cdot compute MAP relative sizes au
- · learn MAP DAG G, θ for each
- reweight patient samples

 $\propto \tau_j P(D_i | G_j, \bar{\theta}_j)$

• repeat till convergence

Latent Z indicates which graph model each patient sample derives from

$$D_i | (Z_i = j) \sim (G_j, \theta_j)$$
$$P(Z_i = j) = \tau_j$$

EM MAP mixture model clustering

Weight patient samples into *k* groups

- \cdot compute MAP relative sizes au
- · learn MAP DAG G, θ for each
- reweight patient samples

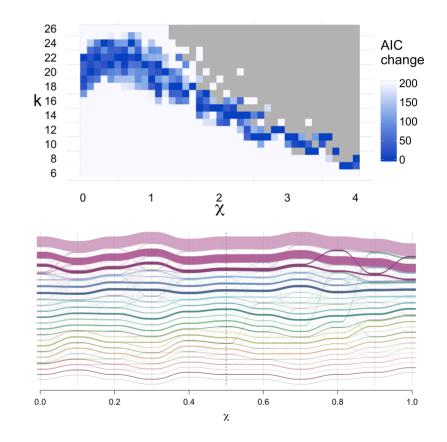
 $\propto \tau_j P(D_i | G_j, \bar{\theta}_j)$

repeat till convergence

Latent Z indicates which graph model each patient sample derives from

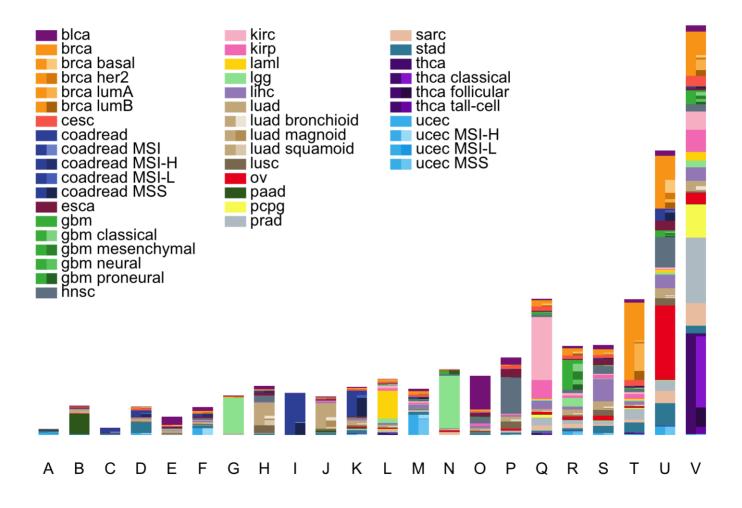
$$D_i | (Z_i = j) \sim (G_j, \theta_j)$$
$$P(Z_i = j) = \tau_j$$

Start with no edges parameter learning



· find 22 clusters for $\chi = 0.5$

Graphical clustering



alternative stratification?

•

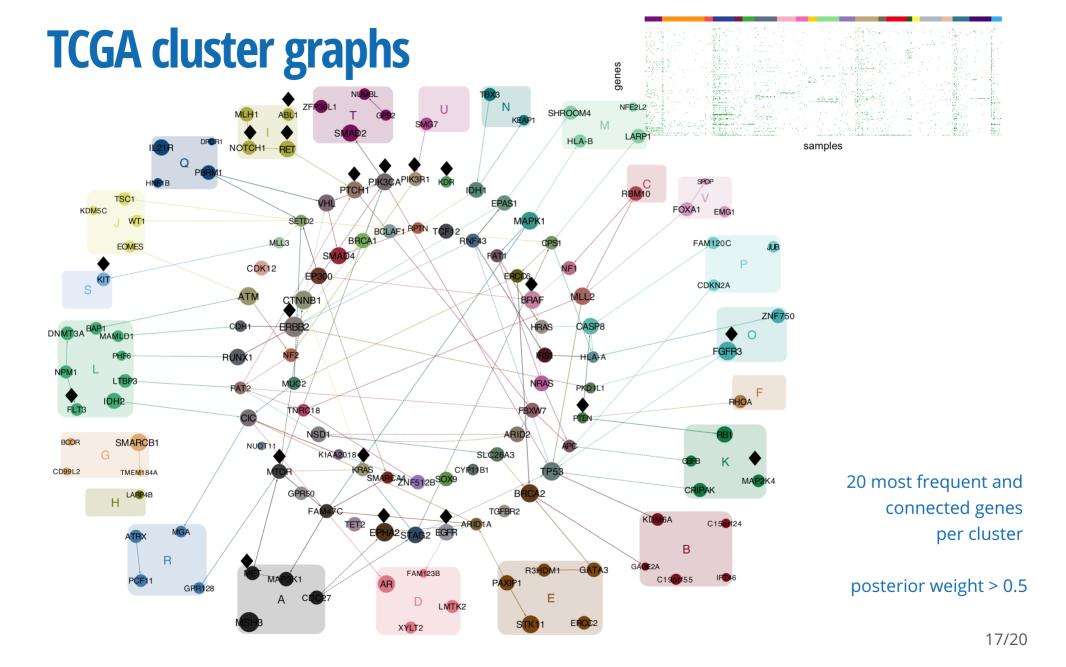
Survival analysis

Check if clusters based on mutational profiles are a significant survival predictor

 \cdot above age, stage and cancer type

METHOD	UNCORRECTED LR	CORRECTED LR	P-VALUE
Hierarchical clustering (Hamming distance)	11.4	5.7	0.95
Non-negative matrix factorisation	104.7	12.7	0.23
K-means	172.0	29.8	1.5×10^{-5}
Gaussian mixture model (Mclust)	205.6	33.1	1.4×10^{-6}
Bernoulli mixture model (no edges, $\chi=0$)	240.9	34.0	7.5×10^{-7}
Bernoulli mixture model (no edges, $\chi=0.5$)	242.4	35.7	2.1×10^{-7}
Graphical clustering (edges, $\chi = 0.5$)	253.0	37.0	7.6×10^{-8}

- Likelihood ratio (LR) from Cox proportional hazard regression including cluster assignment
- number of clusters fixed to 22



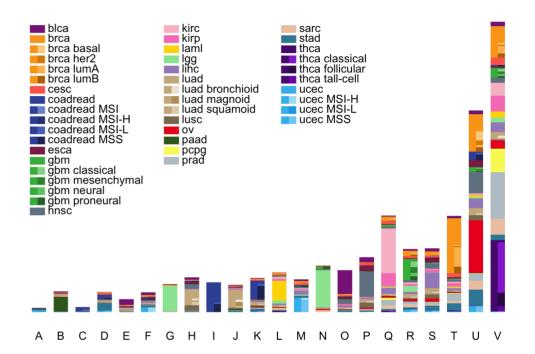
Towards precision oncology?

Can cluster mutation profiles

 \cdot recapitulate a lot of clinical information

Want to integrate clinical covariates

· cluster conditionally



Towards precision oncology?

Can cluster mutation profiles

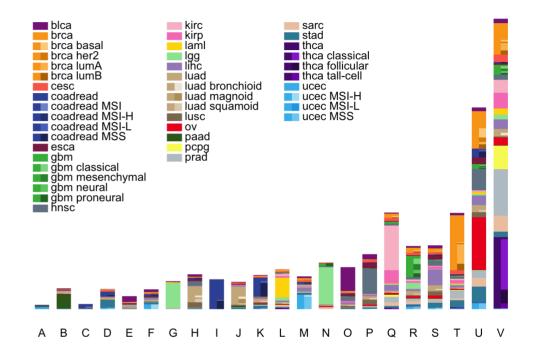
 \cdot recapitulate a lot of clinical information

Want to integrate clinical covariates

- · cluster conditionally
- Want to link to drug response
- cell line data GDSC

Want to integrate further data

- expression
- copy number aberations
- \cdot methylation



Tumour progression

Tumours are heterogeneous

· complex clonal structure

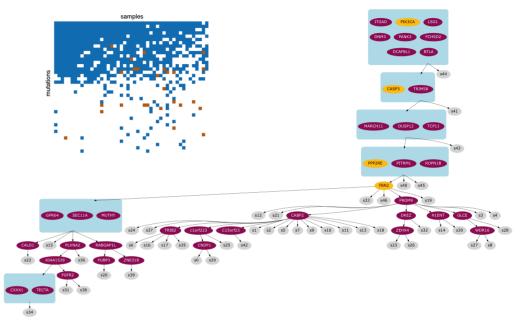
They evolve

- over time
- \cdot under treatment

Mutation profiles were a single snapshot!

Should account for

- · clonal structure
- tumour progression



Data Wang ... Navin, Nature 2014 Inference Jahn, Kuipers and Beerenwinkel, GB 2016

Summary

Can use partitions to sample DAGs JASA 2017

Extend to larger networks arXiv:1803.07859

Applied to pancancer mutations NC 2018

- supervised cancer type networks
- unsupervised clustering

Outlook

• integrate clinical data?

O Computational

iology

Group

- integrate other data modalities?
- tumour progression and heterogeneity?

