

Cardiovascular medicine: approaches to the use of early biomarker response to identify a patient subgroup with enhanced therapeutic benefit

Björn Bornkamp, Georgina Bermann

Contents

- 1. Background
- 2. Estimating the treatment difference of interest
- 3. Simulations

based on https://doi.org/ 10.1080/19466315.2019.1575280

Background: the CANTOS trial

- CANTOS trial
 - Tested whether reducing inflammation with canakinumab leads to reduction in the risk of CV events
 - Canakinumab blocks Interleukin-1β (IL-1β) a cytokine that modulates inflammatory response
 - The downstream marker of inflammatory risk and also of treatment activity was high-sensitivity C-Reactive Protein (hsCRP)
 - Observational data establish that it is prognostic of cardiovascular risk
- Population:
 - previous myocardial infarction and hsCRP > 2 mg per liter
- Treatment
 - Three dosing regimens vs placebo
 - 50mg, 150mg, 300mg every 4 weeks (+ loading for the 300mg group)
- Primary outcome: Time to first major adverse cardiovascular events (MACE)
 - cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke
- Results:
 - Only 150mg significant after adjusting for multiplicity with a hazard ratio of 0.85

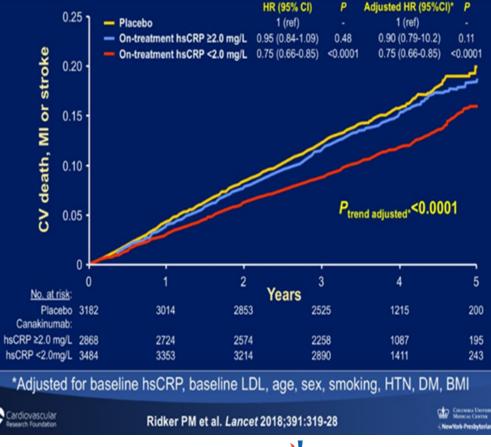
Responder subgroup in the CANTOS trial

CANTOS

- It suggested a larger benefit in this subpopulation than in the overall trial population
- The comparison implemented compared responders pooling all 3 canakinumab groups, to all placebo regardless of their month 3 hsCRP levels

CANTOS: Responder Analysis

CV death, MI or stroke according to attainment of hs-CRP <2 mg/L at 3 months



What is the estimand that captures the effect of treatment?

- Estimand: Treatment effect on MACE in the population of patients that would at month 3 reach hsCRP < 2.0 mg/L if assigned to treatment
- Attainment of hsCRP levels < 2 mg/L on active treatment is an event arising post-randomization
- Identification of this estimand requires strong assumptions in a parallel groups trial
 - Not immediately clear how survival for treatment threshold achievers would have been if treated with placebo
 - & vice versa which patients on placebo would have achieved the threshold if they had received treatment

Principal stratification estimand

 Z - indicator of treatment assignment (0: Placebo, 1:Active) 		Placebo B(0) = 1 hsCRP<2mg/dL	Placebo B(0) = 0 hsCRP≥2mg/dL
B(z) -potential biomarker outcome for treatment Z=z	Treatment B(1) = 1		
T(z) –Survival outcome on treatment z	hsCRP<2mg/dL		outcome urvival
	Treatment B(1) = 0 hsCRP≥2mg/dL		respect MACE

- Subpopulation of interest
 - Patients with B(1) = 1 (threshold achievers on treatment)
- Quantities of interest to estimate
 - Survival for treatment threshold achievers on treatment P(T(1) > t | B(1) = 1)
 - Survival for treatment threshold achievers on placebo P(T(0) > t | B(1) = 1)

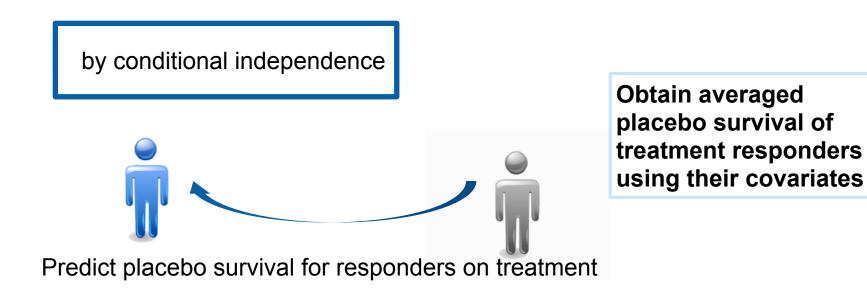
Potential outcomes

- Each patient has 2 potential outcomes related to treatment assignment
 - Biomarker levels on treatment, B(1) and on placebo B(0)
 - Survival on treatment, T(1), and survival on placebo T(0)
- In a parallel arm clinical trial only one of these combinations can be observed

Ţ	B(0) = 1		B(0) = 0	
B(1) = 1	T(1)	T(0)	T(1)	T(0)
B(1) = 0	T(1)	T(0)	T(1)	T(0)

Identification and estimation: P(T(0) > t | B(1) = 1)

- Requires additional assumptions: T(0) B(1) | X
- We utilize covariates X predictive of T(0) and B(1)



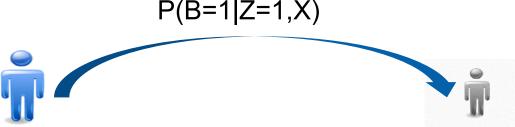
U NOVARTIS

Identification and estimation: P(T(0) > t | B(1) = 1)

- Using the same assumptions: T(0) B(1) | X
- We utilize covariates X predictive of B(1)

dX

Compare to observed placebo survival weighting placebo patients with

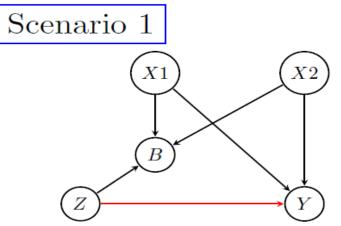


Either weighted survival or weighted regression for survival outcomes

U NOVARTIS

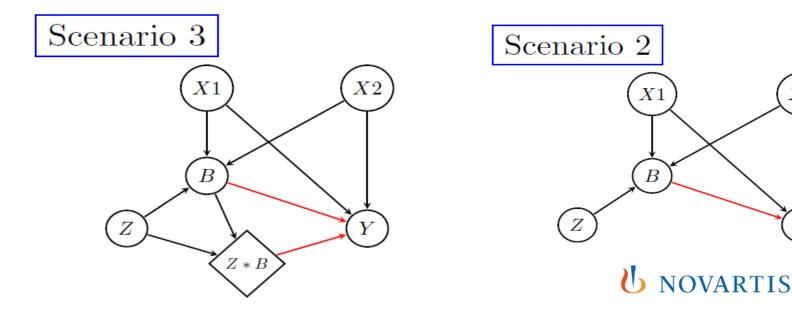
Simulation experiment to evaluate performance

- Survival outcome trials from
 - Biomarker values (Z,)
 - Survival outcomes with
- We evaluate 3 Scenarios



X2

Y



Issue of the measure for survival outcomes

- The simulations evaluate the difference in restricted mean survival time (RMST)
- Reluctance to use the hazard ratio was due to
 - non-collapsibility
 - lack of causal interpretation specifically of the estimate from Cox regression even in a randomized clinical trial (Aalen et al 2015).
- However, we mention that
 - if the cumulative hazard functions are approximately linear, a simple exponential model could be derived to estimate the hazard, and calculate the hazard ratio as the ratio of the hazards.
- Main difference:
 - A difference in survival can be estimated non-parametrically (e.g. using the difference in RMST)
 - The hazard rate requires additional modelling assumptions to obtain a single estimate that represents the average hazard rate used to calculate the ratio between treatments

Performance evaluation

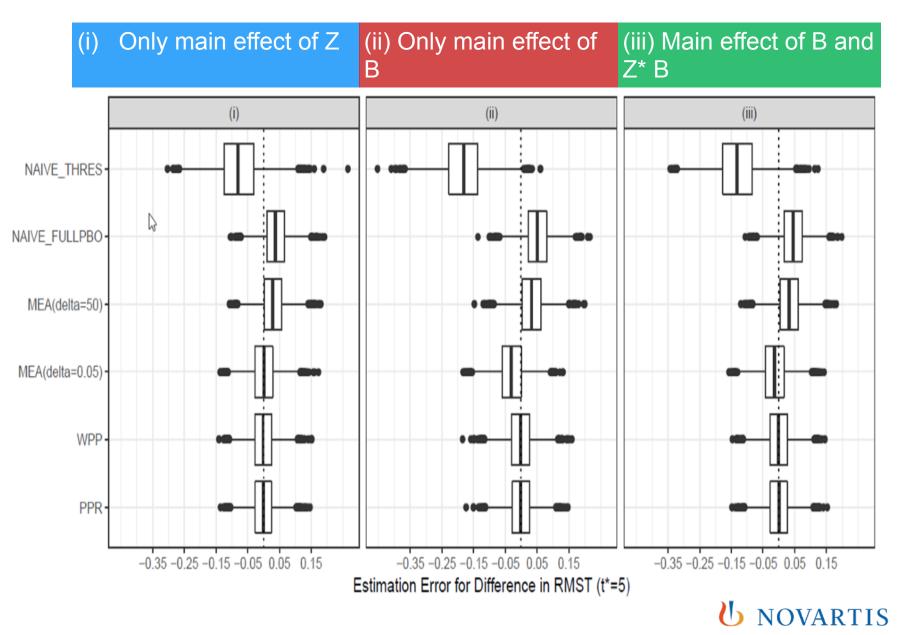
Comparison of survival:

 Predicted Placebo Response (PPR) and Weight Placebo Patients (WPP) difference in restricted mean survival time at a pre-specified time point

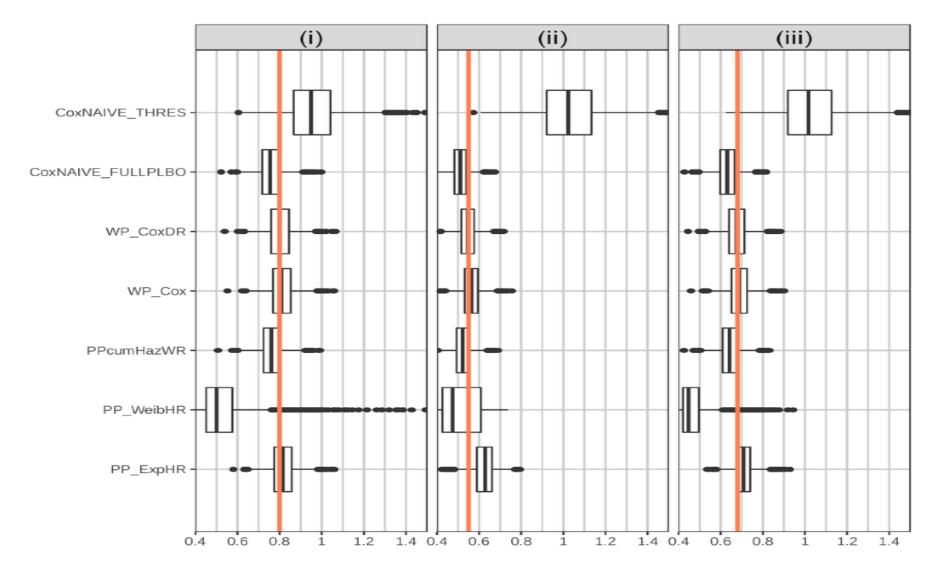
Comparison based on the hazard rates:

- Predicted Placebo (PP)
 - Same as survival for PPR above. We use a nonlinear regression fit to the survival functions that follows an exponential or Weibull parametrization, and fitting a weighted linear regression model to the cumulative survival function
- Weight Placebo (WP)
 - With weighted Cox regression including treatment only, and X1 and X2 (DR)
- We also compare with 2 "naive" approaches:
 - NAIVE_THRES- compares to placebo patients reaching the threshold (on placebo)
 - NAIVE_FULLPBO- compares to all placebo patients regardless of whether they would have been responders if given treatment or not

Results: survival difference scale



Results: hazard ratio scale



U NOVARTIS

Summary

- These are approaches to derive the magnitude of treatment benefit in a patient subpopulation defined by an early biomarker response
 - They are not meant as mediation analysis
 - They do not fall in the surrogacy field
 - We do not account for inter-current events. Their treatment requires additional assumptions.
 - We keep survival risk between treatments equal to risk at the time of randomization assuming all patients have biomarker measurements
- Survival difference scale: both approaches perform well regardless of the path through which treatment impacts survival
- Hazard ratio scale: only the weighted placebo applied to Cox regression including covariates performs well regardless of treatment path

Is this useful for cardiovascular drug development?

- An early response to treatment can be used for treatment optimization strategies or treatment selection
 - This framework cannot replace a randomized comparison, but may be useful for planning future targeted randomized trials
- Cardiovascular outcome trials build on the premise of homogeneous patient responses
 - but the long treatment horizon with competing events dilutes treatment impact in some patient segments
 - This causal inference framework can enhance understanding of patient responses
 - Protocol defined follow up treatment strategies might be a way of optimizing the conduct of these trials

