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The replicability crisis in science

... scholars have found that the results of many scientific
studies are difficult or impossible to replicate (Wikipedia)



John P.A. Ioanidis
(School of Medicine, courtesy appoint. Statistics, Stanford)

Ioanidis (2005): Why Most Published Research Findings Are
False (PLOS Medicine)



one among possibly many reasons:
(statistical) methods may not generalize so well...



Single data distribution and accurate inference

say something about generalization to a population from
the same distribution as the observed data

Graunt & Petty (1662), Arbuthnot (1710), Bayes (1761), Laplace (1774), Gauss (1795,

1801, 1809), Quetelet (1796-1874),..., Karl Pearson (1857-1936), Fisher (1890-1962),

Egon Pearson (1895-1980), Neyman (1894-1981), ...

Bayesian inference, bootstrap, high-dimensional inference,
selective inference, ...



Generalization to new data distributions

generalization beyond the population distributions(s) in the data
replicability for new data generating distributions

setting:
observed data from distribution P0

want to say something about new P ′ 6= P0

; “some kind of extrapolation”

; “some kind of causal thinking” can be useful
(as I will try to explain)

see also “transfer learning” from machine learning



Generalization to new data distributions

generalization beyond the population distributions(s) in the data
replicability for new data generating distributions

setting:
observed heterogeneous data from distributions Pe (e ∈ E)
E = observed sub-populations

want to say something about new Pe′ (e′ /∈ E)

; “some kind of extrapolation”

; “some kind of causal thinking” can be useful
(as I will try to explain)

see also “transfer learning” from machine learning (cf. Pan and Yang)



GTEx data

Genotype-Tissue Expression (GTEx) project

a (small) aspect of entire GTEx data:
I 13 different tissues, corresponding to E = {1,2, . . . ,13}
I gene expression measurements for 12’948 genes

(one of them is the response, the other are covariates)
sample size between 300 - 700

I we aim for:
prediction for new tissues e′ /∈ E
replication of results on new tissues e′ /∈ E

it’s very noisy and high-dimensional data!



“Causal thinking”

we want to generalize/transfer to new situations with new
unobserved data generating distributions

causality: is giving a prediction (a quantitative answer) to a
“what if I do/perturb” question but the perturbation (aka “new
situation”) is not observed



many modern applications are faced with such prediction tasks:

I genomics: what would be the effect of knocking down (the
activity of) a gene on the growth rate of a plant?

we want to predict this without any data on such a gene
knock-out (e.g. no data for this particular perturbation)

I E-commerce: what would be the effect of showing
person “XYZ ” an advertisement on social media?
no data on such an advertisement campaign for “XYZ ” or
persons being similar to “XYZ ”

I etc.



Heterogeneity, Robustness and a bit of causality

assume heterogeneous data from different known observed
environments or experimental conditions or

perturbations or sub-populations e ∈ E :

(X e,Y e) ∼ Pe, e ∈ E

with response variables Y e and predictor variables X e

examples:
• data from 10 different countries
• data from 13 different tissue types in GTEx data



consider “many possible” but mostly non-observed
environments/perturbations F ⊃ E︸︷︷︸

observed

examples for F :
• 10 countries and many other than the 10 countries
• 13 different tissue types and many new ones (GTEx example)

problem:
predict Y given X such that the prediction works well
(is “robust”/“replicable”) for “many possible” new environments
e ∈ F based on data from much fewer environments from E



trained on designed, known scenarios from E

new scenario from F !



trained on designed, known scenarios from E

new scenario from F !



a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”/“replicable”) for “many possible” environments
e ∈ F based on data from much fewer environments from E

for example with linear models: find

argminβ max
e∈F

E|Y e − X eβ|2

it is “robustness”︸ ︷︷ ︸
distributional robust.

and causality



a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”/“replicable”) for “many possible” environments
e ∈ F based on data from much fewer environments from E

for example with linear models: find

argminβ max
e∈F

E|Y e − X eβ|2

it is “robustness”︸ ︷︷ ︸
distributional robust.

and causality



a pragmatic prediction problem:
predict Y given X such that the prediction works well
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Causality and worst case risk

for linear models: in a nutshell

for F = {all perturbations not acting on Y directly},
argminβ max

e∈F
E|Y e − X eβ|2 = causal parameter = β0

X Y

E

β0

X Y

H hiddenE

β0

that is:
causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios
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causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios
no causal graphs or potential outcome models (Neyman, Holland, Rubin, ...,
Pearl, Spirtes, ...)

causality and distributional robustness are intrinsically related
(Haavelmo, 1943)

Trygve Haavelmo, Nobel Prize in Economics 1989

L(Y e|X e
causal) remains invariant w.r.t. e

causal structure =⇒ invariance/“robustness”

(Peters, PB & Meinshausen, 2016)



causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios
no causal graphs or potential outcome models (Neyman, Holland, Rubin, ...,
Pearl, Spirtes, ...)

causality and distributional robustness are intrinsically related
(Haavelmo, 1943)

Trygve Haavelmo, Nobel Prize in Economics 1989

L(Y e|X e
causal) remains invariant w.r.t. e

causal structure⇐= invariance
(Peters, PB & Meinshausen, 2016)



causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios

causality and distributional robustness are intrinsically related
(Haavelmo, 1943)

Trygve Haavelmo, Nobel Prize in Economics 1989

causality⇐⇒ invariance/“robustness”

and novel causal regularization allows to exploit this relation



Anchor regression: as a way to formalize the extrapolation from E to F
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

?

Y ← Xβ0 + Hδ + εY ,

X ← Aα+ Hγ + εX

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

Y ← Xβ0 + εY + Hδ,

X ← Aα0 + εX + Hγ,

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

A is an “anchor”
source node!

; Anchor regressionX
Y
H

 = B

X
Y
H

+ ε+ MA



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

A is an “anchor”
source node!

allowing also for
feedback loops

; Anchor regressionX
Y
H

 = B

X
Y
H

+ ε+ MA



allow that A acts on Y and H

; there is a fundamental identifiability problem
cannot identify β0

this is the price for more realistic assumptions than IV model



... but “Causal Regularization” offers something

find a parameter vector β such that the residuals

(Y − Xβ) stabilize, have the “same” distribution

across perturbations of A = environments/sub-populations

we want to encourage orthogonality of residuals with A
something like

β̃ = argminβ‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)/n‖22



β̃ = argminβ‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)/n‖22

causal regularization:

β̂ = argminβ‖(I − ΠA)(Y − Xβ)‖22/n + γ‖ΠA(Y − Xβ)‖22/n

+ λ‖β‖1

ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares
I for 0 ≤ γ <∞: general causal regularization

+ `1-penalty

convex optimization problem



β̃ = argminβ‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)/n‖22

causal regularization:

β̂ = argminβ‖(I − ΠA)(Y − Xβ)‖22/n + γ‖ΠA(Y − Xβ)‖22/n + λ‖β‖1
ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares + `1-penalty
I for 0 ≤ γ <∞: general causal regularization + `1-penalty

convex optimization problem



... there is a fundamental identifiability problem...

but causal regularization solves for

argminβ max
e∈F

E|Y e − X eβ|2

for a certain class of shift perturbations F
recap: causal parameter solves for
argminβ maxe∈F E|Y e − X eβ|2 for F = “essentially all” perturbations



Model for F : shift perturbations

model for observed heterogeneous data (“corresponding to E”)X
Y
H

 = B

X
Y
H

+ ε+ MA

model for shift perturbations F (in test data)
shift vectors vX v

Y v

Hv

 = B

X v

Y v

Hv

+ ε+ v

v ∈ Cγ ⊂ span(M), γ measuring the size of v

i.e. v ∈ Cγ = {v ; v = Mu for some u with E[uuT ] � γE[AAT ]}



A fundamental duality theorem
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

PA the population projection onto A: PA• = E[•|A]

For any β

max
v∈Cγ

E[|Y v − X vβ|2] = E
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2]

≈ ‖(I − ΠA)(Y − Xβ)‖2
2/n + γ‖ΠA(Y − Xβ)‖2

2/n︸ ︷︷ ︸
objective function on data

worst case shift interventions←→ regularization!
in the population case

; just regularize! (instead of l.h.s. which is a difficult object)



for any β

argminβ

worst case test error︷ ︸︸ ︷
max
v∈Cγ

E
[∣∣Y v − X vβ

∣∣2]
=

argminβ

E
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2]︸ ︷︷ ︸
criterion on training population sample

; and “therefore” also finite sample guarantees for predictive
stability (i.e. optimizing a worst case risk)

(we have worked out all the details)



argminβ

worst case test error︷ ︸︸ ︷
max
v∈Cγ

E
[∣∣Y v − X vβ

∣∣2]
= argminβ E

[∣∣(Id− PA)(Y − Xβ)
∣∣2]+ γE

[∣∣PA(Y − Xβ)
∣∣2]︸ ︷︷ ︸

criterion on training population sample

; and “therefore” also finite sample guarantees for predictive
stability (i.e. optimizing a worst case risk)

(we have worked out all the details)



distributional robustness ←→ causal regularization

Adversarial Robustness
machine learning, Generative Networks

e.g. Ian Goodfellow

Causality

e.g. Judea Pearl



and indeed, one can improve prediction
with causal-type regularization

I image classification with CNN
(Heinze-Deml and Meinshausen, 2017)

for problems with domain shift: gross improvement over non-regularized
standard optimization

I causal-robust machine learning
Leon Bouttou et al. since 2013 (Microsoft and now Facebook)

other examples:
I UCI machine learning and Kaggle datasets
I macro-economics (MSc thesis with KOF Swiss Economic Institute)

; small (≈ 5%) but persistent gains



Science aims for causal understanding

... but this may be a bit ambitious...

causal inference necessarily requires (often untestable)
additional assumptions

e.g. in anchor regression model: we cannot find/identify the
causal (“systems”) parameter β0

X Y

H hiddenA

β0



Invariance and “diluted causality”

by the fundamental duality in anchor regression:

γ →∞ leads to shift invariance of residuals

bγ = argminβE
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2])
b→∞ = lim

γ→∞
bγ ; shift invariance

b→∞ is generally not the causal parameter
but because of shift invariance: name it “diluted causal”
note: causal = invariance w.r.t. very many perturbations



notions of associations

marginal correlation

regression

invariance

           
causal*

under faithfulness conditions, the figure is valid (causal* are the causal variables as in

e.g. large parts of Dawid, Pearl, Robins, Rubin, ...)



Stabilizing

John W. Tukey (1915 – 2000)Tukey (1954)

“One of the major arguments for regression instead
of correlation is potential stability. We are very sure
that the correlation cannot remain the same over a wide
range of situations, but it is possible that the regression
coefficient might. ...
We are seeking stability of our coefficients so that we
can hope to give them theoretical significance.”

marginal correlation

regression

invariance

           
causal*



“Diluted causality”: important proteins for cholesterol

Ruedi Aebersold, ETH Zürich

3934 other proteins
which of those are
“diluted causal”
for cholesterol

experiments with mice: 2 environments with fat/low fat diet

high-dimensional regression, total sample size n = 270
Y = cholesterol pathway activity, X = 3934 protein expressions
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beyond cholesterol: with transcriptomics and proteomics

not all of the predictive variables
from regression lead to invariance!
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and we actually find promising candidates

we “checked” in independent datasets the top hits
; has worked “quite nicely”

further “validation” with respect to finding known pathways
(here for Ribosome pathway)

Ribosome − diet, mRNA
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Distributional Replicability

The replicability crisis

... scholars have found that the results of many scientific
studies are difficult or impossible to replicate (Wikipedia)
more severe issue than just “accurate confidence”, “selective inference”, ...



The “diluted causal” parameter b→∞ is replicable

assume
I new dataset for replication arises from shift perturbations

(as before)
I a practically checkable so-called projectability condition

infb E[Y − Xb|A] = 0

consider
b→∞ which is estimated from the first dataset
b′→∞ which is estimated from the second (new) dataset

Then: b→∞ is replicable, i.e.,

b→∞ = b′→∞



Replicability for b→∞ in GTEx data across tissues

I 13 tissues
I gene expression measurements for 12’948 genes, sample

size between 300 - 700
I Y = expression of a target gene

X = expressions of all other genes
A = 65 PEER factors (potential confounders)

estimation and findings on one tissue
; are they replicable on other tissues?



Average replicability for b→∞ in GTEx data across tissues

5 10 15 20

0
2

4
6

8
10

12

K

nu
m

be
r 

of
 r

ep
lic

ab
le

 fe
at

ur
es

 o
n 

a 
di

ffe
re

nt
 ti

ss
ue

anchor regression − anchor regression
lasso − anchor regression
lasso − lasso

x-axis: number K for the top K features
y-axis: overlap of the top K ranked variables/features

(found by a method on tissue t and on tissue t ′ 6= t)
averaged over all 13 t and averaged over 1000 random choices of a gene as the response



additional information in anchor regression path!

the anchor regression path:

anchor stability: b0 = b→∞(= bγ ∀γ ≥ 0)

checkable!

assume:
I anchor stability
I projectability condition

; the least squares parameter b1 is replicable!

we can safely use “classical” least squares principle and
methods (Lasso/`1-norm regularization, de-biased Lasso, etc.)
for transferability to some class of new data generating
distributions Pe′ e′ /∈ E



Replicability for least squares par. in GTEx data across tissues
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We can make relevant progress by exploiting
invariances/stability

I finding more promising proteins and genes: based on
high-throughput proteomics

I replicable findings across tissues: based on
high-throughput transcriptomics

I prediction of gene knock-downs (not shown today): based
on transcriptomics

(Meinshausen, Hauser, Mooij, Peters, Versteeg, and PB, 2016)
I large-scale kinetic systems (not shown today): based on

metabolomics (Pfister, Bauer and Peters, 2019)



Conclusions

I causal regularization is for the population case
(not because of “complexity” in relation to sample size)
; distributional robustness and replicability

(not claiming to find “truly causal” structure)
I the key is to exploit certain invariances

I anchor regression (with γ large) justifies instrumental
variables regression when IV assumptions are violated
; “diluted causality” and invariance of residuals



make heterogeneity or non-stationarity your friend
(rather than your enemy)!



make heterogeneity or non-stationarity your friend
(rather than your enemy)!



Theorem (Rothenhäusler, Meinshausen, PB & Peters, 2018)
assume:

I a “causal” compatibility condition on X (weaker than the standard compatibility condition);

I (sub-) Gaussian error;

I dim(A) ≤ C <∞ for some C;
Then, for Rγ(u) = maxv∈Cγ

E|Y v − X v u|2 and any γ ≥ 0:

Rγ(β̂γ) = min
u

Rγ(u)︸ ︷︷ ︸
optimal

+OP(sγ
√

log(d)/n),

sγ = supp(βγ), βγ = argminβRγ(u)

if dim(A) is large: use `∞-norm causal regularization
I good for identifiability (lots of heterogeneity) regularization
I a statistical price of log(|A|)



Distributionally robust optimization:
(Ben-Tal, El Ghaoui & Nemirovski, 2009; Sinha, Namkoong & Duchi, 2017)

arminβ max
P∈P

EP [(Y − Xβ)2]

perturbations are within a class of distributions

P = {P; d(P, P0︸︷︷︸
emp. distrib.

) ≤ ρ}

the “model” is the metric d(., .) and is simply postulated
often as Wasserstein distance

metric d(.,.)

Perturbations from distributional robustness

radius rho



learned

from

data

amplified

anchor regression     robust optimization

      pre−specified radius
perturbations

causal regularization: the class of perturbations is an
amplification of the observed and learned heterogeneity from E


