
Bivariate network meta-analysis
for surrogate endpoint evaluation

Sylwia Bujkiewicz

Biostatistics Research Group, University of Leicester, U.K.

Basel 4 February 2020

Sylwia Bujkiewicz (University of Leicester) 1 / 52



Outline

Introduction

Bivariate meta-analysis

Bivariate network meta-analysis

Results: simulated scenarios
Simulation study: scenarios
Simulation study: results

Example in aCRC

Discussion
Extensions
Final discussion points

References

Sylwia Bujkiewicz (University of Leicester) 2 / 52



Introduction

Surrogate endpoints

Treatment
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endpoint

Final clinical
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treatment effect
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Surrogate outcome: A biomarker that is intended to substitute for a
clinical (final) outcome.
A surrogate end point is expected to predict clinical benefit

Biomarkers Definitions Working Group. Clin Pharmacol Ther 2001.
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Introduction

Surrogate endpoints: importance

Surrogate endpoints are of interest in drug development process if they

can be measured

I less costly

I less invasively

I or require shorter follow-up time

compared to a target (final) clinical outcome.

They are increasingly important in health technology assessment

I at the early stages of drug development

I conditional licensing based on a biomarker

I evidence on treatment effectiveness on a target outcome limited

evidence on treatment effectiveness on a target outcome limited
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Introduction

Examples of potential surrogate endpoints
I In oncology, a number of putative surrogate endpoints for overall

survival have been investigated, which include measures of response
or time to non-mortality event (such as progression).

I Examples include:
I Progression free survival (PFS) in advanced colorectal cancer

(Buyse et al. Journal of Clinical Oncology 2007,
Ciani et al. Journal of Clinical Epidemiology 2015)

I Event free survival (EFS) in gastric cancer
(Oba et al, Journal of the National Cancer Institute 2013)

I Cytogenetic response or molecular response in chronic myeloid
leukaemia
(Ciani et al, Value in health 2013)

I But also in other diseases:
I CD4 count as a surrogate to AIDS or death in HIV infection

(Daniels MJ, Hughes MD. Statistics in Medicine 1997.)
I Relapse rate as a surrogate to disability progression in multiple sclerosis

(Sormani MP et al. Neurology 2010; 75:302–309.)
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Introduction

Surrogate endpoints in decision making

I Use of surrogate endpoints may bring another level of uncertainty if
the surrogate relationship (between the treatment effects on the
surrogate and final outcomes) is not properly evaluated.

I For example, between Jan 2008 and Dec 2012, FDA made 36 of 54
cancer drug approvals (67%) on the basis of a surrogate endpoint: 19
based on response rate and 17 based on PFS or disease free survival.
At further follow up, 5 drugs were subsequently shown to improve OS,
18 drugs failed to improve OS, and 13 drugs continued to have
unknown survival effects.
(Kim and Prasad, JAMA Internal Medicine 2015)

I Appropriate validation of surrogate endpoints is required before they
can be used in HTA decision making.
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Introduction

Methods for Surrogate Endpoint Validation

I Validation on three levels
(Taylor and Elston, Health Technology Assessment 2009)

I biological plausibility of association between outcomes
I patient-level association between outcomes
I study-level association

A surrogate endpoint is expected to predict clinical benefit

I For HTA decision-making, a modelling framework is required
I to establish the strength of the surrogate relationship between the

treatment effects on the surrogate and the final outcome
I and to predict the likely treatment effect on the final outcome for the

new health technology

Sylwia Bujkiewicz (University of Leicester) 7 / 52



Introduction

Methods for Surrogate Endpoint Validation

I Relying solely on patient level association not sufficient when
evaluating surrogate endpoints, in particular when individual level
association evaluated based on data from a single trial
(Fleming and DeMets, Annals of internal medicine 1996)

I A single trial validation cannot guarantee that an association between
effects confirmed based on individual data under one treatment will
hold in other interventions.

I A meta-analytic approach, based on data from a number of trials to
establish the association between the treatment effects on the
candidate surrogate endpoint and on the final outcome is more
appropriate for evaluation of surrogate endpoints.
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Introduction

Methods for Surrogate Endpoint Validation

I Putative surrogate endpoints are validated by estimating the pattern
of association between the treatment effects on surrogate and final
endpoints across trials.

I Bivariate meta-analysis methods, that take account of the correlations
between the average treatment effects on surrogate and final
outcomes, are suitable tools for modelling surrogate endpoints
(Bujkiewicz et al, NICE DSU Technical Support Document 20; October 2019).

I Individual patient data hierarchical methods can be used to evaluate
surrogate endpoint at both patients and study levels (Buyse et al.

Biostatistics 2000, Burzykowski et al. Journal of Royal Statistical Society A 2004).
I Bivariate methods for summary data can be used to model study-level

surrogacy (Daniels and Hughes, Statistics in Medicine 1997,

Bujkiewicz et al. Statistical Methods in Medical Research 2018).
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Bivariate meta-analysis

Bivariate random-effects meta-analysis (BRMA)

within–study model(
Y1i

Y2i

)
∼ MVN

((
δ1i

δ2i

)
,Σi =

(
σ2

1i σ1iσ2iρwi
σ1iσ2iρwi σ2

2i

))
,

between–study model(
δ1i

δ2i

)
∼ MVN

((
d1

d2

)
,T =

(
τ2

1 τ1τ2ρ
τ1τ2ρ τ2

2

))
.

Hierarchical framework:

I Y1i , Y2i – estimates of correlated treatment effects δ1i , δ2i

I Σi – within-study covariance matrices of the estimates.

I δ1i , δ2i – true treatment effects in the population

I (d1, d2) – pooled estimates

I T – between-study covariance matrix.
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Bivariate meta-analysis Correlated effects

study 1

Patients may differ in their
baseline characteristics

leading to variability
between effects

Data on two outcomes,
such as systolic blood pressure
and diastolic blood pressure,

are collected from all individuals
randomised to two treatments.

(Y11,Y21)
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Bivariate meta-analysis Correlated effects

study 1

y11

y21

(Y11,Y21)
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Bivariate meta-analysis Correlated effects

study 1 study 2 study N

. . .

(Y11,Y21) (Y12,Y22) (Y1N ,Y2N)
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Bivariate meta-analysis Correlated effects

Bivariate random-effects meta-analysis

Y11

Y21

Summary data on two outcomes, collected from multiple studies.
Patient populations may differ leading to between-studies variability
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Bivariate meta-analysis Correlated effects

Bivariate random effects meta-analysis (2)

within–study model(
Y1i

Y2i

)
∼ MVN

((
δ1i

δ2i

)
,Σi =

(
σ2

1i σ1iσ2iρwi
σ1iσ2iρwi σ2

2i

))
,

between–study model(
δ1i

δ2i

)
∼ MVN

((
d1

d2

)
,T =

(
τ2

1 τ1τ2ρ
τ1τ2ρ τ2

2

))
.

Y1i and Y2i – estimates of the treatment effects on two outcomes
δ1i and δ2i – correlated true effects in the population

Prior distributions are placed on the parameters:
the between-studies heterogeneity parameters: τj ∼ U(0, 2)
between-studies correlation ρ = r ∗ 2− 1, r ∼ Beta(1.5, 1.5)
pooled effects dj ∼ N(0, 1000).
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Bivariate meta-analysis Correlated effects

Bivariate random effects meta-analysis (3)

within–study model(
Y1i

Y2i

)
∼ MVN

((
δ1i

δ2i

)
,Σi =

(
σ2

1i σ1iσ2iρwi
σ1iσ2iρwi σ2

2i

))
,

between–study model(
δ1i

δ2i

)
∼ MVN

((
d1

d2

)
,T =

(
τ2

1 τ1τ2ρ
τ1τ2ρ τ2

2

))
.

Y1i and Y2i – estimates of the treatment effects on two outcomes
δ1i and δ2i – correlated true effects in the population

Surrogacy criteria:
perfect surrogacy means that ρ = ±1 and δ1i = 0 ⇔ δ2i = 0.
Trial-level (adjusted) R2 = ρ2 = 1.
((Buyse et al Biostatistics 2000, Burzykowski et al RSS A 2001, Renfro et al Stat Med 2012)
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Bivariate meta-analysis Correlated effects

Bivariate random effects meta-analysis (3)
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Evidence structure

Data requirements for surrogate endpoint validation

I Data from all relevant studies on the treatment effect on both
outcomes (the surrogate endpoint and the final clinical outcome) are
typically included in the analysis.

I Relevant studies are typically identified through a systematic review.

I For a strong surrogate endpoint (a good predictor of clinical benefit)
the surrogate relationship will not depend on a treatment or a
subpopulation – data from all trials in all subgroups of patients in a
given disease area would be used.

I Often subsets of interventions or population may only be included.

I For example when the differences in mechanism of action between
treatment types or patients subgroups affect the estimates of the
treatment effect on the surrogate and final outcomes in different
ways, thus affecting the estimates of the surrogate relationship.
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Evidence structure

Mixed treatment evidence
study 1 study 2 study N

• • •

A vs. B B vs. C A vs. C
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Evidence structure

Illustrative simulated scenarios
Scenario 1 Scenario 2

A

B C

10 10

10
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Bivariate network meta-analysis
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Bivariate network meta-analysis

Network meta-analysis

Direct comparison Indirect comparison

A

B C

A

B C

Mixed comparisons

A

B C

dBC = dAC − dAB
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Bivariate network meta-analysis

Bivariate network meta-analysis (bvNMA)

(
Y1kli

Y2kli

)
∼ MVN

((
δ1kli

δ2kli

)
,

(
σ2

1kli σ1kliσ2kliρwkli

σ1kliσ2kliρwkli σ2
2kli

))
(
δ1kli

δ2kli

)
∼ MVN

((
d1kl

d2kl

)
, Tkl =

(
τ2

1kl τ1klτ2klρkl
τ1klτ2klρkl τ2

2kl

))

k , l – baseline (control) and experimental treatment in a study i ,
δjkli – true treatment effects ( l vs. k) for outcome j in study i
djkl – mean treatment effect of l vs. k for outcome j .

Achana FA, Cooper NJ, Bujkiewicz S, et al. BMC Med Res Meth 2014; 14:92.
Efthimiou O, et al. Statistics in Medicine 2014; 33:2275–87.
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Bivariate network meta-analysis

bvNMA: consistency assumptions
First order consistency assumption:(

d1kl

d2kl

)
=

(
d1bl − d1bk

d2bl − d2bk

)
b = 1 – common reference treatment in the network
dj,1k – basic parameters, j = 1, 2, k = 1, . . . , nt

dj,11 = 0, prior distributions: dj,1k ∼ N(0, 103).

Second order consistency assumption:

I Triangle inequalities: |τjbl − τjbk | ≤ τjkl ≤ τjbl + τjbk
I and further constraints on the covariances:
τ1klτ2klρ1kl ,2kl =
τ1blτ2blρ1bl ,2bl + τ1bkτ2bkρ1bk,2bk − τ1blτ2bkρ1bl ,2bk − τ1bkτ2blρ1bk,2bl

Prior distributions for Tkl constructed:

I ensuring the second-order consistency assumption (Lu and Ades, Biostatistics 2009)

I Cholesky separation strategy – to ensure matrix is positive semi-definite
(Wei and Higgins, Statistics in Medicine 2013).
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Bivariate network meta-analysis

Surrogacy across different populations

A

B C

A

B C

n1 n2

n3 + 1

n1 n2

n3

xxx surrogate endpoint final outcome xxxxx

Surrogacy criteria:
within treatment contrast kl , perfect surrogacy:

ρ1kl ,2kl = ±1 and δ1kli = 0 ⇔ δ2kli = 0
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Bivariate network meta-analysis

Surrogacy across different treatments

A

B C

D A

B C

n1 n2

n3

1
n1 n2

n3

surrogate endpoint final outcome
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Bivariate network meta-analysis

bvNMA 2: exchangeability of treatments

For each treatment arm k; ancillary parameters θjk , such that dj1k = θjk − θj1, k > 1
are assumed exchangeable and correlated.

This implies the association between the average effects:(
d1kl

d2kl

)
∼ N

{(
0
0

)
,

(
ω2

1 ω1ω2ρt
ω1ω2ρt ω2

2

)}
,

k 6= l , k, l = 1, . . . , nt .

Across-treatments surrogacy:

ρt = ±1, and d1,kl = 0 ⇔ d2,kl = 0

Prior distributions:
ωj ∼ Unif (0, 2)
and ρt = r ∗ 2− 1 with r ∼ Beta(1.5, 1.5).
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Results: simulated scenarios

Results: scenario 1

A

B C

model AB BC AC

correlations
BRMA 0.57 (0.27, 0.79)
bvNMA 0.88 (0.55, 0.99) 0.74 (0.22, 0.97) 0.9 (0.66, 0.99)
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Results: simulated scenarios

Scenario 1: Predicted effect from BRMA
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Results: simulated scenarios

Scenario 1: Predicted effect from bvNMA
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Results: simulated scenarios

Results: scenario 2

A

B C

model AB BC AC

correlations
BRMA 0.94 (0.88, 0.98)
bvNMA 0.78 (0.20, 0.99) -0.05 (-0.60, 0.53) 0.80 (0.26, 0.99)
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Results: simulated scenarios

Scenario 2: Predicted effect from BRMA
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Results: simulated scenarios

Scenario 2: Predicted effect from bvNMA
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Results: simulated scenarios Simulation study: scenarios
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Results: simulated scenarios Simulation study: results

mean ρkl / wCrI
AB BC AC

scenario 1: true correlations ρkl = 0.9
BRMA 0.55 / 0.42
bvNMA 1a 0.73 / 0.70 0.74 / 0.68 0.82 / 0.43
bvNMA 1b 0.77 / 0.58 0.72 / 0.62 0.84 / 0.40
bvNMA 1d 0.77 / 0.30
scenario 2: true correlations ρkl = 0.9
BRMA 0.99 / 0.02
bvNMA 1a 0.80 / 0.47 0.80 / 0.46 0.80 / 0.47
bvNMA 1b 0.82 / 0.40 0.80 / 0.47 0.81 / 0.41
bvNMA 1d 0.82 / 0.22
scenario 3: true correlations ρkl = 0.25
BRMA 0.42 / 0.49
bvNMA 1a 0.16 / 1.08 0.16 / 1.07 0.16 / 1.07
bvNMA 1b 0.19 / 1.04 0.16 / 1.01 0.19 / 1.03
bvNMA 1d 0.22 / 0.66
scenario 4: true correlations ρkl = 0.25
BRMA 0.92 / 0.09
bvNMA 1a 0.17 / 1.02 0.17 / 1.00 0.17 / 1.02
bvNMA 1b 0.19 / 0.98 0.18 / 0.98 0.19 / 0.98
bvNMA 1d 0.21 / 0.62

BRMA – bivariate random effects meta-analysis (pair wise)
1a – model with first order consistency, 1b – second order consistency,

1d – heterogeneity of the between-studies variances and correlations
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Results: simulated scenarios Simulation study: results

AB BC AC
model coverage RMSE wCrIr coverage RMSE wCrIr coverage RMSE wCrIr
scenario 1
BRMA 0.99 0.72 0.99 0.72 1.00 1.10
bvNMA 1a 0.99 0.41 0.57 0.98 0.42 0.57 0.98 0.19 0.27
bvNMA 1b 0.98 0.41 0.51 0.97 0.42 0.51 1.0 0.18 0.29
bvNMA 1d 0.95 0.44 0.43 0.95 0.45 0.43 0.98 0.26 0.45
scenario 2
BRMA 0.93 0.19 0.95 0.18 0.98 0.15
bvNMA 1a 0.98 0.19 1.15 0.97 0.18 1.16 0.98 0.15 0.92
bvNMA 1b 0.96 0.19 1.04 0.96 0.18 1.05 0.99 0.15 0.96
bvNMA 1d 0.93 0.20 0.90 0.94 0.19 0.90 0.99 0.15 0.92
scenario 3
BRMA 1.0 0.57 1.0 0.59 0.95 1.07
bvNMA 1a 0.97 0.40 0.51 0.97 0.42 0.51 0.98 0.40 0.52
bvNMA 1b 0.97 0.40 0.50 0.98 0.42 0.50 0.98 0.39 0.52
bvNMA 1d 0.98 0.39 0.47 0.97 0.41 0.47 0.99 0.39 0.48
scenario 4
BRMA 0.95 0.35 0.95 0.35 0.97 0.30
bvNMA 1a 0.97 0.31 0.96 0.98 0.31 0.96 0.98 0.25 0.83
bvNMA 1b 0.96 0.30 0.88 0.97 0.31 0.89 0.98 0.25 0.83
bvNMA 1d 0.95 0.30 0.75 0.95 0.31 0.75 0.97 0.25 0.76
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Example in aCRC Data

Illustrative example:
advanced colorectal cancer (aCRC)

50 randomized controlled trials (RCTs) investigating use of

I anti-VEGF with chemotherapy vs. chemotherapy alone (15 RCTs)

I EGFRi with chemotherapy vs. chemotherapy alone (24 RCTs)

I EGFRi with chemotherapy vs. anti-VEGF with chemotherapy (4 RCTs)

I EGFRi with anti-VEGF and chemotherapy vs. anti-VEGF with chemotherapy (4 RCTs)

I anti-IgG2 with EGFRi and chemotherapy vs. EGFRi with chemotherapy
(1RCT, 2 subgroups)

I anti-IGF1R with chemotherapy vs. chemotherapy alone (1 RCT)

I EGFRi with anti-VEGF and chemotherapy vs. chemotherapy alone (1 RCT)

anti-VEGF – antiangiogenic treatments targeting vascular endothelial growth factor
EGFRi – epidermal growth factor receptor inhibitors
anti-IgG2 – humanised monoclonal antibody targeting integrin receptors
anti-IGF1R – monoclonal antibody targeting the type 1 insulin-like growth factor receptor

Sylwia Bujkiewicz (University of Leicester) 36 / 52



Example in aCRC Data

Illustrative example:
advanced colorectal cancer (aCRC)

50 randomized controlled trials (RCTs) investigating use of

I anti-VEGF with chemotherapy vs. chemotherapy alone (15 RCTs)

I EGFRi with chemotherapy vs. chemotherapy alone (24 RCTs)

I EGFRi with chemotherapy vs. anti-VEGF with chemotherapy (4 RCTs)

I EGFRi with anti-VEGF and chemotherapy vs. anti-VEGF with chemotherapy (4 RCTs)

I anti-IgG2 with EGFRi and chemotherapy vs. EGFRi with chemotherapy
(1RCT, 2 subgroups)

I anti-IGF1R with chemotherapy vs. chemotherapy alone (1 RCT)

I EGFRi with anti-VEGF and chemotherapy vs. chemotherapy alone (1 RCT)

Wagner et al. Cochrane Database of Systematic Reviews. 2009;(3):1–75
Chan et al. Cochrane Database of Systematic Reviews. 2017;(6):1–175
Mocellin et al. Cochrane Database of Systematic Reviews. 2017;(1):1–121
Kumachev et al. PloS one. 2015;10(10):e0140187.
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Example in aCRC Data

Illustrative example:
advanced colorectal cancer (aCRC)

50 randomized controlled trials (RCTs) investigating use of

I anti-VEGF with chemotherapy vs. chemotherapy alone (15 RCTs)

I EGFRi with chemotherapy vs. chemotherapy alone (24 RCTs)

I EGFRi with chemotherapy vs. anti-VEGF with chemotherapy (4 RCTs)

I EGFRi with anti-VEGF and chemotherapy vs. anti-VEGF with chemotherapy (4 RCTs)

I anti-IgG2 with EGFRi and chemotherapy vs. EGFRi with chemotherapy
(1RCT, 2 subgroups)

I anti-IGF1R with chemotherapy vs. chemotherapy alone (1 RCT)

I EGFRi with anti-VEGF and chemotherapy vs. chemotherapy alone (1 RCT)

Outcomes and measure of treatment effect:

I potential surrogate endpoint: tumour response (TR), log OR

I final outcome: progression free survival (PFS), log HR
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Example in aCRC Data

Data for the aCRC example
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Example in aCRC Data

Network diagram for the aCRC example

B A

D C F

E
15

24

4

4

1

1

2

A: chemotherapy alone,
B: anti-VEGF therapies + chemotherapy,

C: EGFRi + chemotherapy,
D: EGFRi + anti-VEGF therapies + chemotherapy,

E: anti-IGF1R ,
F: anti-IgG2 + chemotherapy
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Example in aCRC Results

Comparison of results across models

BRMA bvNMA bvNMA 2∗

ρkl

AB

-0.73 (-0.89, -0.49)

-0.69 (-0.96, -0.18) -0.70 (-0.95, -0.19)
AC -0.83 (-0.97, -0.57) -0.83 (-0.97, -0.56)
BC -0.29 (-0.91, 0.67) -0.28 (-0.91, 0.68)
BD -0.28 (-0.89, 0.58) -0.29 (-0.90, 0.56)
AE -0.08 (-0.89, 0.83) -0.07 (-0.89, 0.84)
AD -0.32 (-0.95, 0.72) -0.35 (-0.95, 0.70)
CF -0.02 (-0.84, 0.82) -0.04 (-0.85, 0.82)

ρt – NA NA -0.34 (-0.92, 0.56)
∗Model with across-treatment exchangeability

ρkl – within-treatment contrast between-studies correlations
ρt – across-treatment correlations obtained from the models allowing for exchangeability
A – chemotherapy alone,
B – anti-VEGF therapies + chemotherapy,
C – EGFRi + chemotherapy,
D – EGFRi + anti-VEGF therapies + chemotherapy
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Discussion

Discussion of NMA for surrogate endpoint
evaluation: summary

I Surrogate relationship may depend on the mechanism of action of
treatments or treatment classes.

I When this is the case, surrogate relationship may be investigated in
subgroups.

I Data included in such analysis will be limited to a certain class of
treatments, which may dramatically reduce evidence base for
surrogate endpoint evaluation.

I The bivariate network meta-analytic method for surrogate endpoint
evaluation can overcome this limitation

I The method allows for modelling surrogate relationships in each
treatment contrast individually whilst borrowing information from
other treatment contrasts by taking into account the network
structure of the data.

Sylwia Bujkiewicz (University of Leicester) 42 / 52



Discussion

Discussion of NMA for surrogate endpoint
evaluation

I An extension of the method, in addition to modelling the study-level
surrogate relationship (within each treatment contrast), models also a
treatment-level surrogacy by assuming additional similarity between
the treatments.

I This extended method allows for predicting treatment effect on the
final outcome for a new study and a new treatment.

I Limitations:
I There may be insufficient number of studies per contrast.
I Consistency assumption may not be valid.
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Discussion Extensions
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Discussion Extensions

Discussion of NMA for surrogate endpoint
evaluation: limitation and further work

I Another method has recently been developed by Papanikos et al.:
I a pair wise approach
I allows for borrowing information about surrogate relationships between

treatment classes

I Two versions of the method are proposed:
I assuming exchangeability (similarity) of the surrogate relationships

across the treatment classes
I a model which relaxes this assumption by allowing for partial

exchangeability, i.e. the level of exchangeability is defined by a
probability of similarity which is learned from the data.
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Discussion Extensions

Standard surrogacy model: Daniels and Hughes

(
Y1i

Y2i

)
∼ N

((
δ1i

δ2i

)
,

(
σ2

1i σ1iσ2iρwi
σ1iσ2iρwi σ2

2i

))
δ

δ2i | δ1i ∼ N(λ0 + λ1δ1i , ψ
2),

Prior distributions:
δ1i ∼ N(0, 1000), λ0 ∼ N(0, 1000), λ1 ∼ N(0, 1000), ψ ∼ Unif (0, 2).

Surrogacy criteria for a perfect surrogate relationship:
λ0 = 0 – no treatment effect on the surrogate endpoint implies no treatment
effect on the final clinical outcome
λ1 6= 0 – establishing a relationship between treatment effects on the surrogate
and final clinical outcomes.
ψ2 = 0 – conditional variance measures the strength of the association

Daniels and Hughes, Statistics in Medicine 1997
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Discussion Extensions

Exchangeability model

(
Y1ij

Y2ij

)
∼ N

((
δ1ij

δ2ji

)
,

(
σ2

1ij σ1ijσ2ijρwij
σ1ijσ2ijρwij σ2

2ij

))
δ

δ2ij | δ1ij ∼ N(λ0j + λ1jδ1ij , ψ
2
j ),

δ
λ0j ∼ N(β0, ξ

2
0), λ1j ∼ N(β1, ξ

2
1)

Prior distributions:
δ1ij ∼ N(0, 1000), β0 ∼ N(0, 1000), β1 ∼ N(0, 1000), ψj ∼ Unif (0, 2),
ξ0,1 ∼ Unif (0, 2).
Surrogacy criteria for a perfect surrogate relationship within each treatment class:
λ0j = 0 – no treatment effect on the surrogate endpoint implies no treatment
effect on the final clinical outcome
λ1j 6= 0 – establishing a relationship between treatment effects on the surrogate
and final clinical outcomes.
ψ2
j = 0 – conditional variance measures the strength of the association

Sylwia Bujkiewicz (University of Leicester) 47 / 52



Discussion Extensions

Partial exchangeability model

(
Y1ij

Y2ij

)
∼ N

((
δ1ij

δ2ji

)
,

(
σ2

1ij σ1ijσ2ijρwij
σ1ijσ2ijρwij σ2

2ij

))
δ

δ2ij | δ1ij ∼ N(λ0j + λ1jδ1ij , ψ
2
j ),

δ
λ0j ∼ N(β0, ξ

2
0),

δ{
λ1j ∼ N(β1, ξ

2
1) if pj = 1

λ1j ∼ N(0, 103) if pj = 0

Prior distributions:
δ1ij ∼ N(0, 1000), β0 ∼ N(0, 1000), β1 ∼ N(0, 1000), pj ∼ Bernoulli(πj)
ψj ∼ Unif (0, 2), ξ0,1 ∼ Unif (0, 2).
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Results in aCRC

Surrogacy between treatment effects on PFS and OS

Papanikos T et al, Statistics in Medicine, published online 28 January 2020.
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Discussion

I Bivariate meta-analysis models surrogate relationships between
treatment effects (ignoring differences in treatments between studies).

I Bivariate network meta-analysis methods allow us to model
I the surrogacy patterns across multiple trials (different populations)

within a treatment contrast
I and across treatment contrasts

thus enabling predictions of the treatment effect on the final outcome
for a new study
I in a new population
I or investigating a new treatment.
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Discussion

I The models can be extended to evaluate jointly multiple surrogate
endpoints
I Showed improved precision of predictions when using multiple

surrogate endpoints in multiple sclerosis
(Bujkiewicz et al, Statistics in Medicine 2016)

I but not in advanced colorectal cancer
(Elia EG, Städler N, Ciani O, Taylor RS, Bujkiewicz S, Combining tumour
response and progression free survival as surrogate endpoints for overall
survival in advanced colorectal cancer. Cancer Epidemiology, 5 January
2020.)

I The models can be extended to take into account correlation between
arms in multi-arm trials (Achana et al BMC MRM 2014).
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