

Network meta-analysis of treatments for previously untreated metastatic PD-L1-positive triple-negative breast cancer Basel Biometric Section Seminar

Mark Pletscher

2015 - 2019: F. Hoffmann-La Roche Ltd 2019 - today: Institute of Health Economics and Health Policy, Bern University of Applied Sciences

February 4, 2020

Challenges

- Comparator in pivotal study (nab-paclitaxel) not approved in Europe.
- Comparator in pivotal study (nab-paclitaxel) not previously investigated.
- Lack of Kaplan-Meier plots on triple-negative sub-populations in HER2-negative studies.
- PD-L1 status had not been measured in previous studies.

Global, randomized, double-blind, phase 3 study [1, 2]

- P Previously untreated locally advanced or metastatic triple-negative breast cancer.
- | Atezolizumab + nab-paclitaxel.
- C Placebo + nab-paclitaxel.
- O Progression-free and overall survival in intent-to-treat and PD-L1-positive ($\geq 1\%$ PD-L1 expression) populations as co-primary endpoints.

Hazard ratio of atezolizumab + nab-paclitaxel versus nab-paclitaxel

	Progression-free survival [1]	Overall survival [2]
Intent-to-treat	0.80 (0.69, 0.92)	0.86 (0.72, 1.02)
PD-L1-positive	0.62 (0.49, 0.78)	0.71 (0.54, 0.94)

IMpassion130 study

Progression-free and overall survival (April 17, 2018 data cut [1])

IMpassion130 study

Overall survival (January 2, 2019 data cut [2])

Network meta-analysis

- P Previously untreated locally advanced or metastatic **PD-L1-positive** triple-negative breast cancer.
- I Atezolizumab + nab-paclitaxel (AN).
- C Nab-paclitaxel (N), paclitaxel (P), paclitaxel + bevacizumab (PB), nab-paclitaxel + bevacizumab (NB), bevacizumab + ixabepilone (BIx), bevacizumab + capecitabine (BCp), capecitabine (Cp), docetaxel (D), docetaxel + bevacizumab 15mg (DB15), docetaxel + bevacizumab 7.5mg (DB7.5), carboplatin (Cb).
- O Progression-free, overall survival, objective response rates, adverse event rates, treatment discontinuation rates due to adverse events.

Progression-free survival data

Kaplan-Meier data from published triple-negative studies

Progression-free survival data

Triple-negative subgroups of Roche sponsored HER2- studies

Progression-free survival data

Matching adjustment

Overall survival data

Kaplan-Meier data from published triple-negative studies

Overall survival data

Triple-negative subgroups of Roche sponsored HER2- studies

Overall survival data

Matching adjustment

Covariate balancing propensity score model

Generalized method of moments estimation [3]

$$\beta_{GMM} = \arg\min_{\beta \in \Theta} g_{\beta}(T, X)^T \sum_{\beta} (T, X)^{-1} g_{\beta}(T, X)$$

Just-identified model with first moment condition

$$g_{\beta} = \frac{1}{N} \sum_{i=1}^{N} w_{\beta}(T_i, X_i) X_i \quad ... \text{First moment condition}$$
$$w_{\beta}(T_i, X_i) = \frac{T_i - \pi_{\beta}(X_i)}{\pi_{\beta}(X_i)(1 - \pi_{\beta}(X_i))}$$
$$\pi_{\beta}(X_i) = \frac{\exp(X_i^T \beta_{GMM})}{1 + \exp(X_i^T \beta_{GMM})} \quad ... \text{Propensity score}$$

Covariate balancing propensity score model

Standardized mean difference between weighted atezolizumab + nab-paclitaxel arm (n=185) and unweighted comparison study

	E2100	MERIDIAN	AVADO
Effective sample size	79.04	87.1	69.78
Age	< 0.001	< 0.001	< 0.001
Height		< 0.001	
BMI		< 0.001	< 0.001
Race white	< 0.001	< 0.001	< 0.001
Race black	< 0.001	< 0.001	< 0.001
Race asian	0.002	< 0.001	< 0.001
Region North America & EU		< 0.001	
Region Asia		< 0.001	< 0.001
ECOG 0		< 0.001	< 0.001
Number of sites	< 0.001	< 0.001	
Number of sites 3			< 0.001
Sum of largest diameters		< 0.001	
Time from initial to metastatic diagnosis	< 0.001		< 0.001
Time from metastatic diagnosis to randomization		< 0.001	< 0.001
Bone metastases	< 0.001	< 0.001	
Liver metastases	< 0.001	< 0.001	< 0.001
Lung metastases	< 0.001	< 0.001	< 0.001
Prior anthracyclines	< 0.001	< 0.001	< 0.001
Prior taxanes	< 0.001	< 0.001	< 0.001
Diastolic blood pressure		< 0.001	
Body temperature		< 0.001	

Entropy balancing

Minimize entropy distance [4]

$$\begin{array}{ll} \min_{w_i} & H(w) = \sum_{i \mid D=0} w_i \log(\frac{w_i}{q_i}) \\ \text{s.t.} & \sum_{i \mid D=0} w_i c_{ri}(X_i) = m_r \\ & \sum_{i \mid D=0} w_i = 1 \end{array}$$

$$\begin{array}{ll} q_i = \frac{1}{n_0} & \dots \text{Base weight} \\ c_{ri}(X_i) = m_r & \dots \text{R balance constraints} \\ \sum_{i|D=0} w_i X_{ij}^{D=0} = E[X_{ij}^{D=1}] & \dots \text{e.g. first moment balance} \end{array}$$

Entropy balancing

Standardized mean difference between weighted treatment arm and unweighted control arm (R Lalonde example dataset [5])

	CBPS	Entropy balancing
Effective sample size	657.98	664.15
Age	0.007	< 0.001
Education	0.005	< 0.001
Race black	0.005	< 0.001
Race Hispanic	0.001	< 0.001
Married	0.006	< 0.001
No degree	0.004	< 0.001

Model

Candidate models

- log-normal model of hazard ratios
- Discrete-time fractional polynomial models (Powers {0}, {1}, {0, 0}, {0, 1}, {1, 1})
- Discrete-time piecewise exponential models (one or two cut-points from 2 to 9 months)

Model selection

Base case models

- Progression-free survival: Piecewise exponential with cut-points at 2 and 4 months
- Overall survival: Piecewise exponential with cut-point at 5 months

Results Goodness of fit in frequentist framework

Progression-free survival		Overall survival			
Model	AIC	BIC	Model	AIC	BIC
FP (2nd order, p1=0, p2=0)	1874.24	2124.19	FP (Weibull, $p1=0$)	1505.57	1647.17
FP (2nd order, p1=0, p2=1)	1897.85	2147.81	FP (2nd order, p1=0, p2=0)	1506.32	1718.71
FP (2nd order, $p1=1$, $p2=1$)	1933.89	2183.84	FP (2nd order, p1 $=$ 0, p2 $=$ 1)	1510.28	1722.67
FP (Weibull, p1 $=$ 0)	2007.56	2174.20	PWE (cutpoints at 5)	1517.39	1658.98
PWE (cutpoints at 2, 4)	2009.66	2259.62	PWE (cutpoints at 3, 6)	1517.55	1729.95

Extrapolations in reference study based on full data

t [months]

Extrapolations in reference study based on full data

t [months]

5-year restricted mean progression-free survival times Expected progression-free survival times

Treatment	Median	95% II	95% ul	
NB	14.6	8.23	25.93	· · · · · · · · · · · · · · · · · · ·
PB	11.53	8.11	16.79	·
AN	11.24	9.55	13.27	
ВСр	8.87	4.69	16.35	
DB15	8.68	5.89	14.06	· · · · · · · · · · · · · · · · · · ·
Blx	8.34	4.9	14.97	· · · · · · · · · · · · · · · · · · ·
DB7.5	7.44	5.13	11.67	
Р	7.14	4.9	10.55	
N100	7.06	3.98	11.59	· · · · · · · · · · · · · · · · · · ·
Ср	6.06	1.12	14.09	·
D	5.91	3.42	9.55	· · · · · · · · · · · · · · · · · · ·
Cb	5.57	2.02	11.52	H
				0 2 4 6 8 10 12 14 16 18 20 22 24 26
				E[t] [months]

5-year restricted mean progression-free survival times Difference to atezolizumab + nab-paclitaxel

5-year restricted mean overall survival times

Expected overall survival times

5-year restricted mean overall survival times

Difference to atezolizumab + nab-paclitaxel

Discussion

- + Individual-level data from HER2- studies.
- + Pre-specified analysis and model selection.
- + Scenario analyses.
- + Multiple matching adjustments using individual data.
- + Large sets of matching variables.
- + Good balance with covariate-balancing propensity scores.

Discussion

- Low effective sample size in weighted atezolizumab + nab-paclitaxel arms.
- Assumption of constant hazard rate in the tail.
- Piecewise exponential model sensitive to choice of cut-points and data in the tail.
- Large uncertainty about the relative effectiveness of paclitaxel because of different shapes of the hazard curves in the E2100 and MERIDIAN studies.
- Results are sensitive to the choice of matching studies and to pooling paclitaxel and nab-paclitaxel.
- Uncertainty about the effect of PD-L1 on the relative efficacy of comparators is a major limitation.
- Clinicians questioned relative ordering of docetaxel, paclitaxel and nab-paclitaxel.
- Payers criticized use of matching adjustment and high uncertainty around parameter estimates.

Conclusion

- \Rightarrow Consider economic evaluation in trial design.
- \Rightarrow Investigate association of biomarkers with effectiveness of previously investigated therapies.
- \Rightarrow Entropy balancing should be considered for estimation of propensity scores.
- \Rightarrow Flexible alternatives to second-order fractional polynomial models are needed.

Thank you very much!

References

- [1] Schmid, P., Adams, S., Rugo, H.S., Schneeweiss, A., Barrios, C.H., Iwata, H., Diéras, V., Hegg, R., Im, S.A., Shaw Wright, G., Henschel, V., Molinero, L., Chui, S.Y., Funke, R., Husain, A., Winer, E.P., Loi, S. and Emens, L.A. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. New England Journal of Medicine, 379(22), 2108–2121, doi:10.1056/NEJMoa1809615, pMID: 30345906.
- [2] Schmid, P., Rugo, H.S., Adams, S., Schneeweiss, A., Barrios, C.H., Iwata, H., Diéras, V., Henschel, V., Molinero, L., Chui, S.Y. et al. (2019). Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (impassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology.
- [3] Imai, K. and Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 243–263.
- [4] Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. Political Analysis, 20(1), 25–46.
- [5] Dehejia, R.H. and Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. Journal of the American statistical Association, 94(448), 1053–1062.