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Scenario: Genomics of Drug Sensitivity

You are looking for top associations between genetic features and drug
response using the GDSCTools package (Cokelaer et al. 2017)
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You are looking for top associations between genetic features and drug
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Scenario: Genomics of Drug Sensitivity
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Further trials would reveal no real effects - in fact this is synthetic data with
drug response synthetically generated independent of genetic features.

What went wrong?



Signals seen in exploratory data
analysis inform trial design.

A visual check for
significance that is...

e Fast, easy, and intuitive

e Convincing even when
users are incentivized to
see a signal

e Easy to integrate into
current workflows

But humans are great at seeing
signals even when they aren't
there.

Images: wikimedia, creative commons license



What to Expect

Motivate the need for more visual inference tools
O Introduce the Visual Lineup Test

O Re-visit the ‘Genomics of Drug Sensitivity’ Example
O Present the See-Value App

O Illustrate Usage of the App



A Lineup Protocol

Protocol described by Buja et al (2009), Majumder et al (2015), Roy Chowdhury et al (2015), and others.

1 | \ 2 3 4 5

i
Vomiting 4 .
Nausea 4
Headache 4
ASTH
ALT 4

o | — E - = Which plot looks

L r E most different
3 - from the others?

11 1 1 14 1 - Treatment Excess
Control Excess
Vomiting 4
Nausea 4
Headache 4 - I
ASTA |
ALT+ -
L
omiting

e - —r— —r— —y —— r——y—
-20% 0% +20% -20% 0% +20% -20% 0% +20% -20% 0% +20% -20% 0% +20%
Differential Occurence

Adverse Events
N
w
o0




A Lineup Protocol

Null Hypothesis:
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Genetics of Drug Sensitivity - Lineup Method
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Permutation:
Scramble the cell line ID in the
drug response table.

Observation:
No facet that is compellingly
distinct from the rest.

Takeaway:

The synthetic data’s volcano plot
that originally looked promising
doesn’t look that unusual for null
data.



Drug IC50

Genetics of Drug Sensitivity - Lineup Method
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Permutation:
Scramble the cell line ID in the
drug response table.

Observation:
Again, no single facet stands
out as obviously distinct.

Takeaway:

The box plot illustrating the
‘most significant’ association
we saw on our synthetic data
was fairly typical for null
generated data.
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Genetics of Drug Sensitivity - Lineup Method

-log(p)

80

60

40

20

80

60

40

20

80

60

80 80 80
—= FDR25.00 % == FDR3895 % == FDR25.00 % == FDR25.00 %
~= FDR10.00 %
60
40
20
= o ®: )
-2 0 2 =2 0 2 =2 0 2
80 80 - ‘ 80 ‘
~= FDR25.00 % —= FOR25.00 % (= FOLALY0 pe A .
~= FDR1000 % -- FOR10.00 %
40 40
- 0 fo - 0
-2 0 2 -2 0 2 -2 0 2
80 ;s B0 —= FOR25.00 % 8o = FDR25.00 %
o A -~ R 1000 % -~ R 1000 %
=+ FORO10 % 60
—: FDROOL % 60
40 40
- 0 1
ey 5 0 2 -2 0 2

Ei‘fect S_ize

Permutation:
Scramble the cell line ID in the
drug response table.

Observation:

Facet 9 notably is the only facet
with numerous associations
above 15 on the y-axis.

Takeaway:
A volcano plot containing
published data with realistic
associations does stand out
against null plots suggesting
real, meaningful associations.
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Genetics of Drug Sensitivity - Lineup Method
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Null Hypothesis:
Drug response is independent
of all genetic features.

Observation:

Facet 4 stands out as it has a
much more balanced number
of cell lines in the + and -
groups.

Takeaway:

It is likely many people would
see facet 4 as notably distinct.
This is the true data,

suggesting there is a signal.
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Contribution: “See” -Value App

www.see-value.org We provide a Shiny app that..

e Facilitates visual permutation

tests as described by Buja et al
'See'-Value App: Facilitating Visual Inference in Pharmacology .
This tool Is intended to help you intuitively evaluate the presence of trends in your data. Rather than relying on standard measures of statistical (2 O O 9)’ M aJ u m d er et a I (20 1 5)’

significance, this tool is meant to help you gain visual intuition for the Information contained In the data by asking the user whether they can pick

the true data out of a lineup plot.
Start by uploading an analysis shared with you or selecting your analysis type below. You will be able to create a lineup plot from your own Roy C h OWd h u ry et a | (20 1 5) .

uploaded data or view lineups from preloaded example data.

Exposure-Response .
Continuous response vs exposure Binary response rate vs exposure Survival ime vs exposure . S U p p O rt S CO m m O n I n fe re n C e

Pl e S

& N I (R~ tasks used in drug development.

e Enables team-based voting and
significance calculations. 13




Response

Response

App workflow: Team Based Voting

Step 1: Select a
supported analysis.

Continuous response vs exposure Binary response rate vs exposure
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Step 2: Explore pre-
loaded vignette

Load Vignette Upload Data

Upload Shared Analysis

2_stm_rato

MEasued_plasma_conc
Which plot do you think contains the real
data?

Learn and practice with
lineups

Step 3: Upload and
configure your data

Load Vignette Upload Data Upload Shared Analysis

Upload Data

Browse... fake_continuous_exposure_binary_response.csv
Exposure

measured_plasma_conc »
Outcome

il2_stim_ratio w

Plot Settings

@ Log X

@ LogY

@ Logistic Overlay

Generate Lineup

Save your analysis setup to share with team members (file includes your
uploaded data).

& Download Analysis Selup’\’R

Download sharable 14
configuration



App workflow: Team Based Voting

Step 5: ‘See’-Value

Step 4: Teammates vote
calculated in-app

and report

Load Vignette Upload Data Upload Shared Analysis
Total Participants Performing Lineup Test

Upload Analysis .Rdata
20
Browse... = shared_lineup_10_01.RData

# of Participants Correctly Identifying Data
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Which plot do you think contains the real

— 'See'-Value: 2e-11

v

1

You selected plot 1, but the true data was in plot 14.

Interpretation similar to 15

Analysis leader tallies
traditional p-value

correct/incorrect votes






Conclusion

Help your teams understand their data and develop
an intuition for distinguishing a strong signal from
random variability

Try out the app at:

Feedback to:
www.see-value.org hdiehl
<at> mit.edu -
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