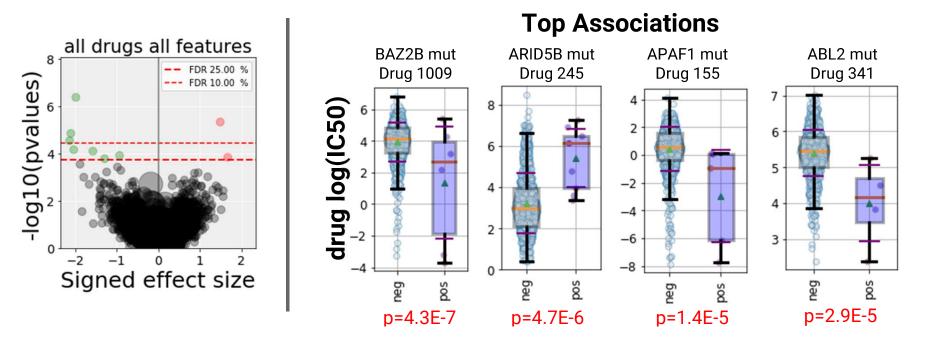
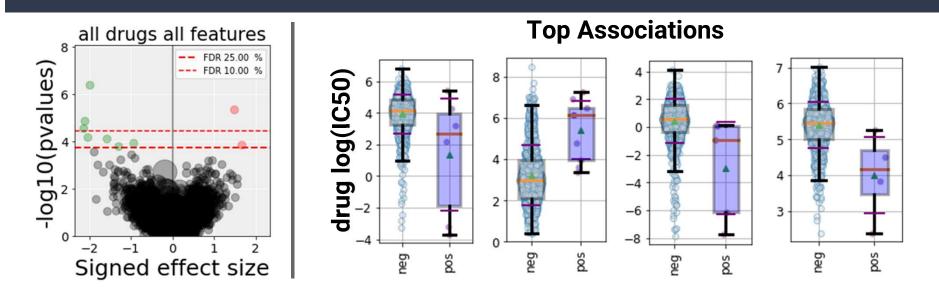

The "See" – Value App: Visual Decision Making for Drug Development

H. Diehl¹, A. M. Stein², N. Roy Chowdhury², T. Broderick¹

¹ MIT, ² Novartis Pharmaceuticals


Scenario: Genomics of Drug Sensitivity

You are looking for top associations between genetic features and drug response using the GDSCTools package (Cokelaer et al. 2017)



Scenario: Genomics of Drug Sensitivity

You are looking for top associations between genetic features and drug response using the GDSCTools package (Cokelaer et al. 2017)

Scenario: Genomics of Drug Sensitivity

Further trials would reveal no real effects - in fact this is synthetic data with drug response synthetically generated independent of genetic features.

What went wrong?

Problem

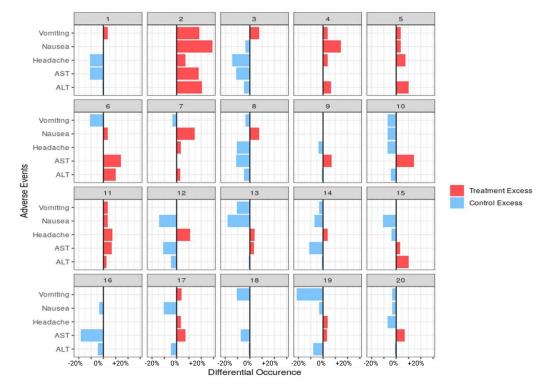
Signals seen in exploratory data analysis inform trial design.

But humans are great at seeing signals even when they aren't there.

Images: wikimedia, creative commons license

Solution

A visual check for significance that is...


- Fast, easy, and intuitive
- Convincing even when users are incentivized to see a signal
- Easy to integrate into current workflows

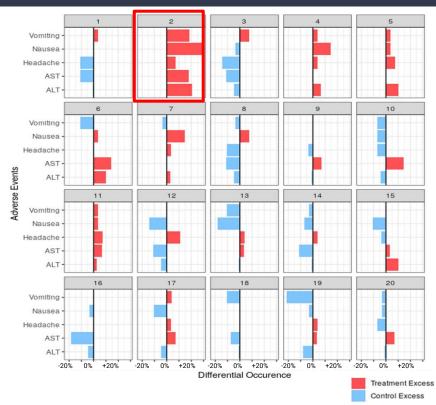
What to Expect

- ☑ Motivate the need for more visual inference tools
- □ Introduce the Visual Lineup Test
- □ **Re-visit** the 'Genomics of Drug Sensitivity' Example
- □ **Present** the See-Value App
- □ Illustrate Usage of the App

A Lineup Protocol

Protocol described by Buja et al (2009), Majumder et al (2015), Roy Chowdhury et al (2015), and others.

Which plot looks most different from the others?

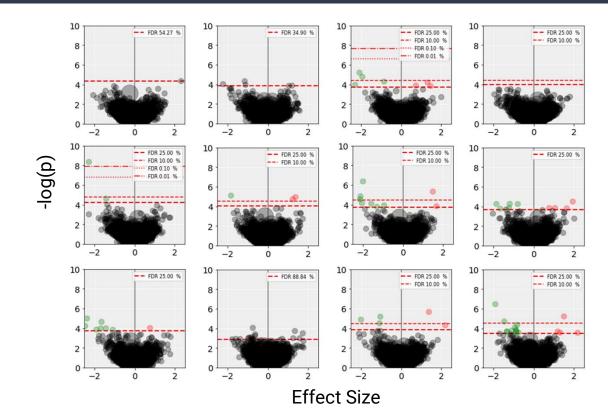

A Lineup Protocol

Null Hypothesis: Control and

treatment have same adverse event occurrence rate.

Permutation:

If group assignment is independent of adverse event risk, group label can be freely permuted


Lineup Test:

1. Plot the real data along with the scrambled data.

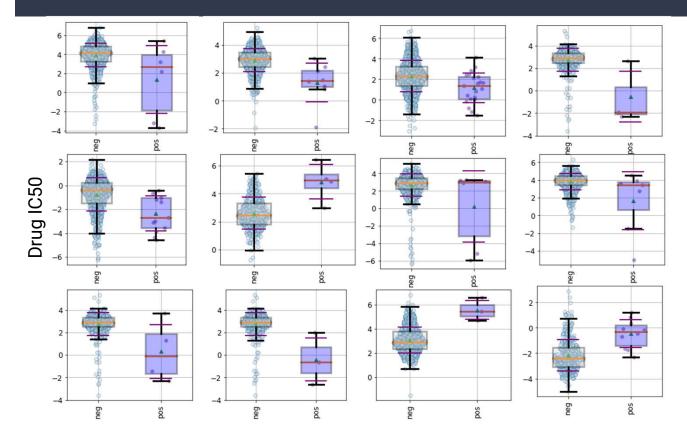
2. Pick the "most unusual" plot.

3. If you can pick out your real data, your result may be significant.

Genetics of Drug Sensitivity – Lineup Method

Permutation:

Scramble the cell line ID in the drug response table.


Observation:

No facet that is compellingly distinct from the rest.

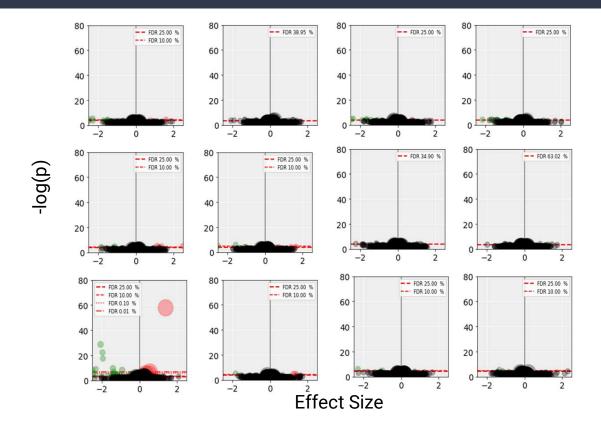
Takeaway:

The synthetic data's volcano plot that originally looked promising doesn't look that unusual for null data.

Genetics of Drug Sensitivity - Lineup Method

Permutation:

Scramble the cell line ID in the drug response table.


Observation:

Again, no single facet stands out as obviously distinct.

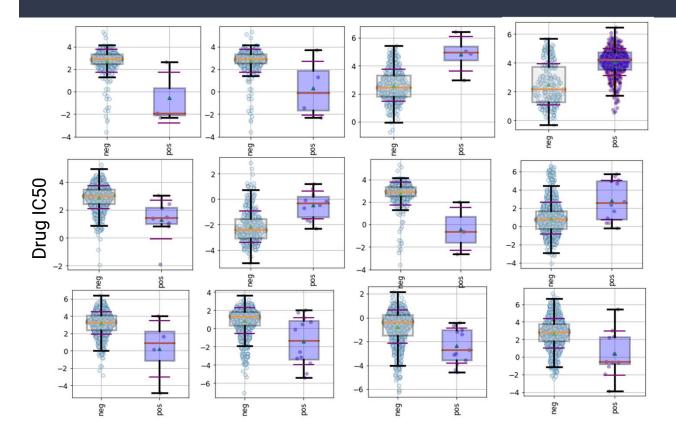
Takeaway:

The box plot illustrating the 'most significant' association we saw on our synthetic data was fairly typical for null generated data.

Genetics of Drug Sensitivity - Lineup Method

Permutation:

Scramble the cell line ID in the drug response table.


Observation:

Facet 9 notably is the only facet with numerous associations above 15 on the y-axis.

Takeaway:

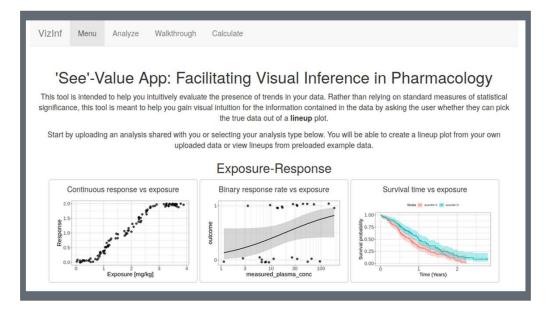
A volcano plot containing published data with realistic associations does stand out against null plots suggesting real, meaningful associations.

Genetics of Drug Sensitivity - Lineup Method

Null Hypothesis:

Drug response is independent of all genetic features.

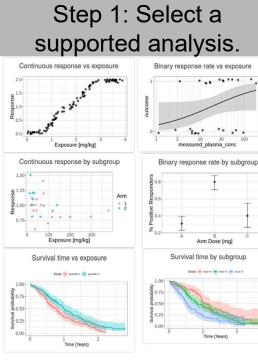
Observation:


Facet 4 stands out as it has a much more balanced number of cell lines in the + and groups.

Takeaway:

It is likely many people would see facet 4 as notably distinct. This is the true data, suggesting there is a signal.

Contribution: "See"-Value App


www.see-value.org

We provide a Shiny app that..

- Facilitates visual permutation tests as described by Buja et al (2009), Majumder et al (2015), Roy Chowdhury et al (2015).
- Supports common inference tasks used in drug development.
- Enables team-based voting and significance calculations.

App workflow: Team Based Voting

With options growing

Step 2: Explore preloaded vignette

	Upload SI	hared An	alysis	
				5 10 15 20
nich plot do you ta?	ito I & ito so ito I mea I think contains the r	3 io 30 io isured_plasma_con eal	1 3 10 30 100 c	1 3 10 30 1

Step 3: Upload and configure your data

Browse	fake continuous exposure binary response.c:	sv	
	Upload complete		
Exposure			
measured_	plasma_conc	•	
Outcome			
il2_stim_ratio			
Plot Settings	5		
Log X			
🖾 Log Y			
Logistic O	iverlay		
Generate L	ineup		
Save your an uploaded dat	alysis setup to share with team members (file incl a).	udes you	
🛓 Downloa	ad Analysis Selup		

App workflow: Team Based Voting

Step 4: Teammates vote and report

Load Vignette		Upload Data	Upload Shared Analysi	
		Upload Analysi	s .Rdata	
Browse	shared_lineup_10_01.RData			
1111	1	Upload comp	loto	

Which plot do you think contains the real data?

. . .

1

You selected plot 1, but the true data was in plot 14.

Analysis leader tallies correct/incorrect votes

Step 5: 'See'-Value calculated in-app

Total Participants Performing Lineup Test 20 # of Participants Correctly Identifying Data 12

'See'-Value: 2e-11

Interpretation similar to traditional p-value

Conclusion

Help your teams understand their data and develop an intuition for distinguishing a strong signal from random variability

Try out the app at: Feedback to: <u>www.see-value.org</u> <at> mit.edu

hdiehl

References

Buja, Cook, Hofmann, Lawrence, Lee, Swayne, and Wickham. 2009 <u>Statistical inference for</u> exploratory data analysis and model diagnostics

Majumder, Hofmann and Cook. 2013 <u>Validation of Visual Statistical Inference, Applied to</u> <u>Linear Models</u>

Roy Chowdhury, Cook, Hofmann, Majumder, Lee, and Toth. 2015 <u>Using visual statistical</u> inference to better understand random class separations in high dimension, low sample size <u>data</u>

Cokelaer et al. GDSCTools for mining pharmacogenomic interactions in cancer. Bioinformatics, 2017, <u>https://doi.org/10.1093/bioinformatics/btx744</u>

DSAIRM by Handel Group at UGA for app template

nullabor package by Cook et al. for lineup generation