DESIGN AND ANALYSIS CONSIDERATIONS OF CAR-T STUDY

ZHENZHEN XU

UNITED STATES FOOD AND DRUG ADMINISTRATION

DISCLAIMER

THE PRESENTATION REFLECTS THE VIEWS OF THE AUTHOR AND SHOULD NOT BE CONSTRUED TO REPRESENT FDA'S VIEW OR POLICIES

OUTLINE

- UNIQUE FEATURES OF CAR-T PRODUCT
- STATISTICAL CHALLENGES ON DESIGN AND ANALYSIS OF CAR-T STUDY
 - RANDOMIZED, CONCURRENT-CONTROLLED DESIGN SETTING
 - TIME-TO-EVENT ENDPOINTS

UNIQUE FEATURES

• CAR-T: MANUFACTURE

• STANDARD OF CARE (SOC):

STATISTICAL CHALLENGES

CHALLENGE #1. MANUFACTURE FAILURE AND DURATION

Randomization before manufacture

manufacture assessment for transplant

Randomization before manufacture

Drawback 1. Under-estimation of treatment effect

- MANUFACTURE FAILURES OR INELIGIBILITY FOR TRANSPLANT:
 - NEGATIVELY AFFECT ASSESSMENT AND INTERPRETATION OF CAR-T EFFECT

Drawback 2. Measuring relative effect of treatment strategy

- CAR-T AND SOC ARMS RECEIVE A SEQUENCE OF TREATMENT REGIMENS:
 - TREATMENT VS SOC CONTRAST MEASURES RELATIVE EFFECT OF TREATMENT STRATEGY

12

• WHAT IS TREATMENT EFFECT OF INTEREST?

Drawback 3. Non-proportional hazards issues

 SOC ARM RECEIVES SIMILAR OR STRONGER BRIDGING THERAPY THAN CAR-T ARM

13

- EFFECT NOT MANIFESTED DURING BRIDGING PERIOD
- CAR-T APPEARS INFERIOR THAN SOC DURING BRIDGING PERIOD

LONG-TERM SURVIVORS

Randomization before manufacture

Drawback 3. Non-proportional hazards issues

manufacture assessment for transplant

manufacture assessment for transplant

- ADVANTAGES:
 - EFFECT OF CAR-T VS TRANSPLANT CAN BE PROPERLY MEASURED

- NON-PROPORTIONAL HAZARDS ISSUE WOULD GO AWAY
- WASTE OF STUDY RESOURCES:

CHALLENGE #2.

CROSS OVER EFFECT

REGULATORY RECOMMENDATIONS

Design:

Analysis:

Hypothetical Examples relative clinical benefit across the entire patient journey once Car-T or SOC treatment strategy is prescribed?

🚊 Design:

Analysis:

Hypothetical Examples relative clinical benefit across the entire patient journey once Car-T or SOC treatment strategy is prescribed?

Randomization at enrollment

Analysis:

Hypothetical Examples relative clinical benefit across the entire patient journey once Car-T or SOC treatment strategy is prescribed?

Randomization at enrollment

INTENT-TO-TREAT set; No need to consider NPH issue;

Interpretation:

(-)

Hypothetical Examples relative clinical benefit across the entire patient journey once Car-T or SOC treatment strategy is prescribed?

Randomization at enrollment

(~~)

INTENT-TO-TREAT set; No need to consider NPH issue;

Intercurrent events should be ignored;

Hypothetical Examples relative clinical effect of CAR-T against transplant administration only?

25

 Design:

Analysis:

Hypothetical Examples relative clinical effect of CAR-T against transplant administration only?

- Randomization after manufacture and patients reaching remission
- Analysis:
- **Interpretation**:

Hypothetical Examples relative clinical effect of CAR-T against transplant administration only?

- Randomization after manufacture and patients reaching remission
- 🤍 INTENT–TO–TREAT set: Eligible subset
- **Interpretation**:

Hypothetical Examples

- relative clinical effect of CAR-T against transplant administration only?
- Randomization after manufacture and patients reaching remission
- 🧠 INTENT–TO–TREAT set: Eligible subset
- Manufacture failures, transplant failures would not be included

- DEFINITION OF OBJECTIVE IS CRITICAL:
 - TREATMENT EFFECT OF INTEREST
 - POPULATION OF INTEREST
 - DESIGN AND ANALYSIS STRATEGY CAN BE TAILORED
 - HANDLING INTERCURRENT EVENTS CAN BE SPECIFIED
- ESTIMAND: ICH E9 ADDENDUM 2019

Regular logrank test

Weighted log-rank test

Restricted mean survival time (RMST) approach

Max-combo test

P

PRIME strategy targeting heterogeneous patient population

REGULAR LOG-RANK TEST:

• SIMULATING PLAUSIBLE NPH PATTERNS

- ANALYZING USING REGULAR LOG-RANK TEST
- LOSS OF STUDY EFFICIENCY
- LIMITATION OF SIMULATION-BASED DESIGN

- MAX-COMBO TEST:
 - $G(\rho = 0, \gamma = 0), G(\rho = 0, \gamma = 1), G(\rho = 1, \gamma = 0), G(\rho = 1, \gamma = 1)$
 - $G(\rho = 0, \gamma = 0)$: EQUALLY WEIGHTING ALL EVENTS
 - $G(\rho = 0, \gamma = 1)$: EMPHASIZING LATE EVENTS
 - $G(\rho = 1, \gamma = 0)$: EMPHASIZING EARLY EVENTS
 - $G(\rho = 1, \gamma = 1)$: EMPHASIZING MID-EVENTS
 - ALLOW DATA TO PICK THE MOST SIGNIFICANT STATISTIC

MAX-COMBO TEST: NOT RECOMMENDED FOR PRIMARY MET

- Across-trial inconsistency:
 - 1ST TRIAL: $G(\rho = 0, \gamma = 1)$: emphasizing late events
 - 2ND TRIAL: $G(\rho = 1, \gamma = 0)$: emphasizing early events
- Justification from clinical and biological perspectives

- PROPER PRE-SPECIFICATION OF DESIGN PARAMETERS
- SUFFICIENT JUSTIFICATION
- ADEQUATE EVALUATION OF MIS-SPECIFICATION RISK

THANK YOU AND QUESTIONS?