CAR-T Cell Therapy Registry

Marcelo C Pasquini, MD, MS Zhen-Huan Hu, MPH apy

The CIBMTR[®] (Center for International Blood and Marrow Transplant Research[®]) is a research collaboration between the National Marrow Donor Program[®] (NMDP)/ Be The Match[®] and the Medical College of Wisconsin (MCW).

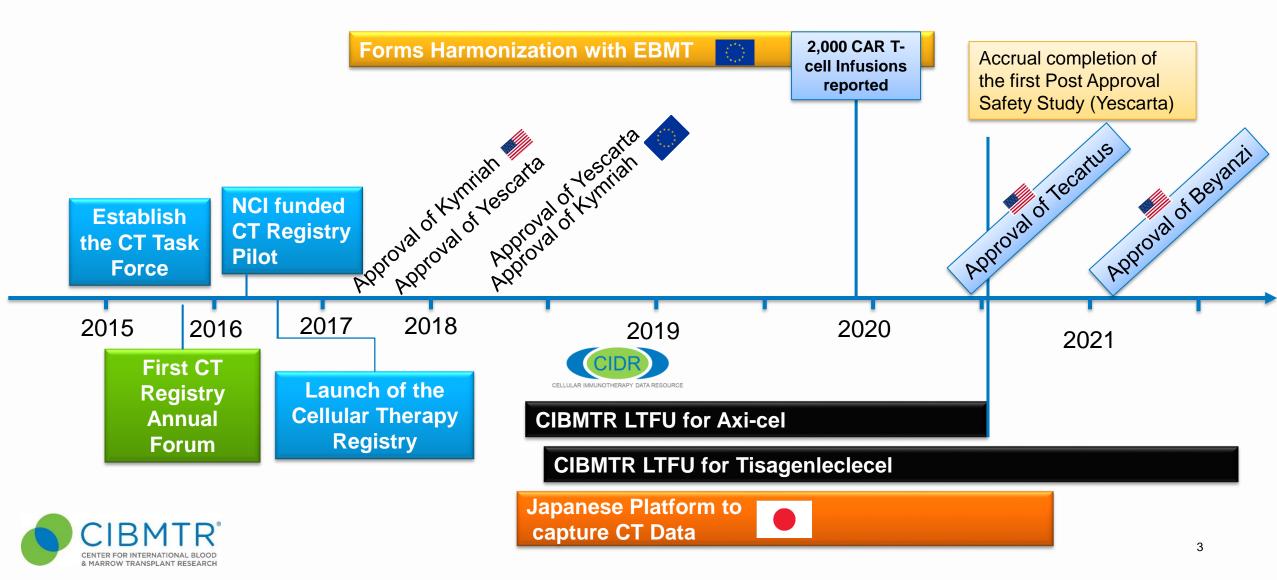
Conflict of Interests to Disclose

• Marcelo C Pasquini, MD, MS

Professor of Medicine, Medical College of Wisconsin

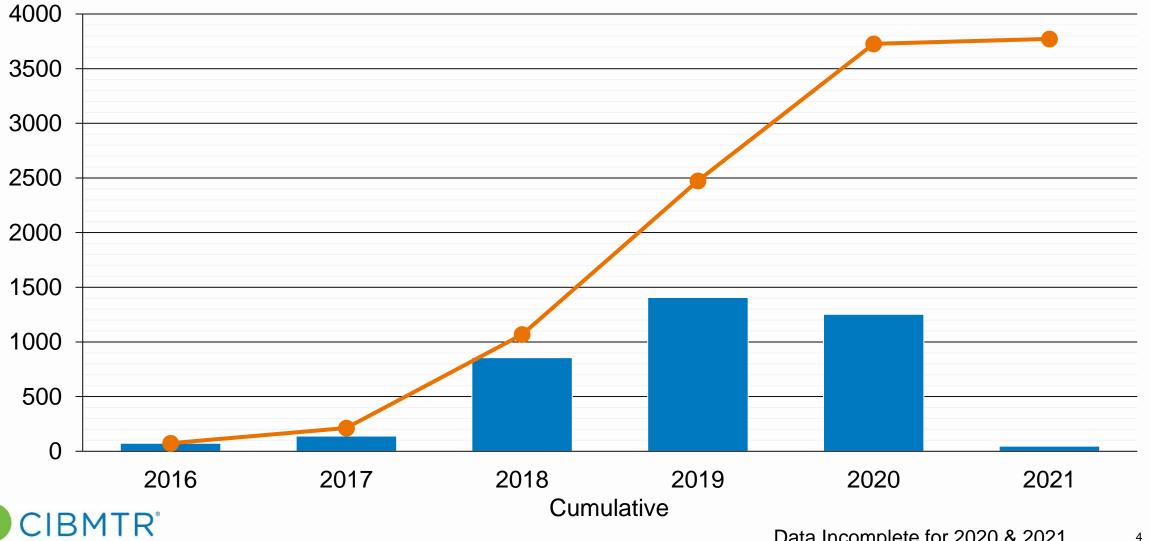
Principal Investigator, Cellular Immunotherapy Data Resource (CIDR)

- Research Support: Bristol Myers Squibb (BMS), Kite Pharma and Novartis
- Consultant: BMS
- Zhen-Huan Hu, MPH


Senior Statistician, Cellular Therapy Lead – CIBMTR/CIDR

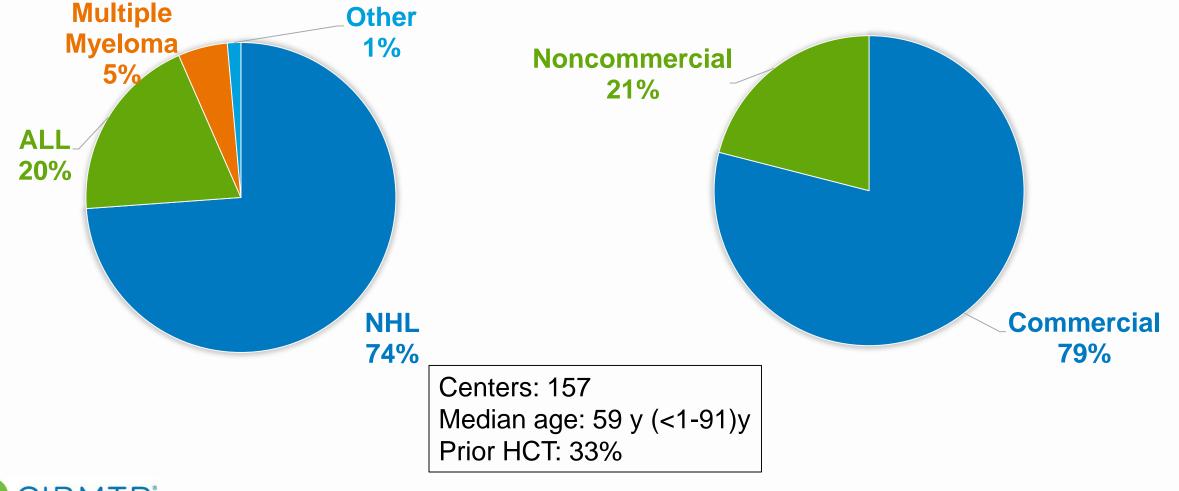
No relevant conflict of interests to disclose

Timeline and Milestones of CT Registry



Number of CAR T cell infusions: 2016-2021 (3,773 patients and 3,976 infusions)

& MARROW TRANSPLANT RESEARCH



Data Incomplete for 2020 & 2021

CAR T Cell Indications: 2016-2021 (N=3,773)

Industry-sponsored Projects

CELLULAR IMMUNOTHERAPY DATA RESOURCE

Project	Sponsor	Objective	Timeline/Duration
Yescarta LTFU	Kite	Safety and efficacy outcomes (PASS) 07/2018	
(Axicabtagene ciloleucel)		N=1,500 (Completed 07/2020) Diseases: LBL	 2 years of accrual 15 years of follow up
		DISEASES. LDL	
Kymriah LTFU	Novartis	Safety and efficacy outcomes (PASS)	08/2018
(Tisagenlecleucel)		N=2,500 (Current N=1000)	5 years of accrual
		Diseases: NHL and ALL	15 years of follow up
Lisocabtagene maraleucel	BMS	Safety and efficacy outcomes (PASS)	5 years
		N=1,000 Disease: NHL	15 years of follow up
Under Development			
Idecabtagene vecleucel	BMS	Safety and efficacy outcomes (PASS)	5 years
		N=1,000 Diseases: Multiple Myeloma	15 years of follow up
Tecartus	Kite	Safety and efficacy outcomes (PASS)	5 years
(Brexucatagene autoleucel)		N=500 Disease: Mantle Cell Lymphoma	15 years of follow up
Ciltacabtagene autoleucel	Janssen/	Safety and efficacy outcomes (PASS)	5 years
-	Legend	N=TBD Disease: Multiple Myeloma	15 years of follow up
	-		•

Statistical Challenges in the Clinical Development of CAR-T Cell Therapies - Registry

The CIBMTR[®] (Center for International Blood and Marrow Transplant Research[®]) is a research collaboration between the National Marrow Donor Program[®] (NMDP)/ Be The Match[®] and the Medical College of Wisconsin (MCW).

Baseline Information Available in Registry

- Patient-related
 - -Age, sex, race/ethnicity -Comorbidities
 - -KPS prior to infusion
- Disease-related
 - -Sub-disease at diagnosis
 - -Disease status prior to infusion
 - -Cytogenetics
 - -Lab values (CBC, blast %, etc)

- Therapy-related
 - -Prior lines of therapies

CELLULAR IMMUNOTHERAPY DATA RESOURCE

- -LD chemo
- -Time of leukapheresis

Outcomes Derived from Registry Data

- Safety outcomes
 - -CRS
 - -ICANS
 - -Prolonged cytopenia
 - -Grade 3-4 organ toxicities
 - -Hypogammaglobulinemia
 - -Tumor lysis syndrome
 - -Serious infections
 - -Subsequent neoplasm
 - -Pregnancy

- Efficacy outcomes
 - -Best overall response (BOR)
 - -Duration of response (DOR)
 - -Relapse/disease progression
 - -Disease-free
 - survival/progression-free survival (DFS/PFS)
 - -Overall survival (OS)

Duration of Follow-Up

- Currently, one of the main challenges for registry studies.
- As of Feb 28, 2021:
 - -2,472 out of 2,997 (82%) patients receiving commercial CAR-T products reported at least one follow-up
 - –Median follow-up of survivors: 11.9 (0.8-37.0) months
- Improving over time.

Data Imbalance

- Unlike clinical trials, the baseline characteristics of patients from the registry may not be completely balanced between two treatment groups.
 - -e.g.: Patient population receiving one CAR-T products may be older than those receiving the other products.
- Solutions:
 - -Matching/stratification
 - -Multivariate regression models (logistic regression, Cox proportional hazard model, direct adjusted survival estimates)
 - Propensity score (propensity score matching, inverse probability of treatment weighting)

Censoring and Competing Risks

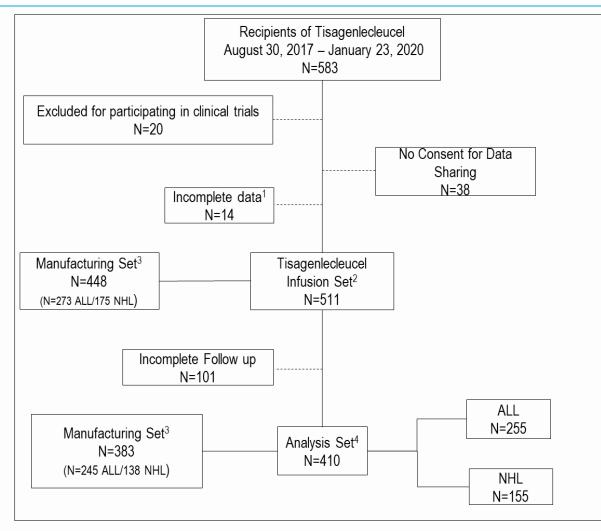
- -Alive at the last follow-up
- -Subsequent HCTs
- -Subsequent CTs
- -Other subsequent anti-cancer therapies

- Competing risk events
 - -Death without experiencing the event of interest

CELLULAR IMMUNOTHERAPY DATA RESOURCE

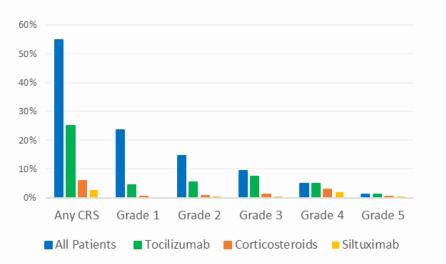
- -Subsequent HCTs
- -Subsequent CTs
- -Other subsequent anticancer therapies

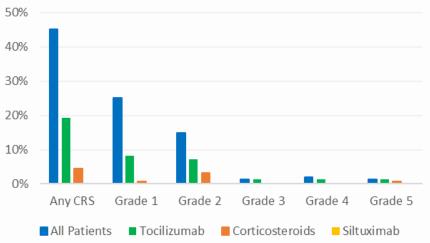
Left-truncation in Retrospective Data



- Left-truncation occurs when certain subjects from the underlying population are unknown to the observers when their event time fails to surpass certain time threshold.
 - -e.g.: If we want to compare registry vs. clinical trial patients from the time of leukapheresis, patients who died between leukapheresis and infusion are not observable through the registry and therefore left-truncated.
- Adjust left-truncation:
 - Supported directly in SAS: Kaplan-Meier/cumulative incidence estimates, Cox proportional hazards model
 - In-house SAS macros: direct adjusted survival estimates, weighted/unweighted logrank test

Tisagenlecleucel Real World Data




CRS with Tisagenlecleucel by indication of the rapy data resource

	ALL		NHL	
Endpoint	CIBMTR (N=255)	ELIANA (N=79)	CIBMTR (N=155)	JULIET (N=115)
CRS				
Any, n (%)	140 (54.9)	61 (77.2)	70 (45.2)	66 (57.4)
Grade ≥3, n (%)	41 (16.1)	38 (48.1)	7 (4.5)	26 (22.6)
Median time to onset in days (range)	6 (1-27)	7 (2-20)	4 (1-14)	3 (1-17)
Median duration in days (range)	7 (1-76)	4 (1-64)	5 (1-33)	12 (1-85)

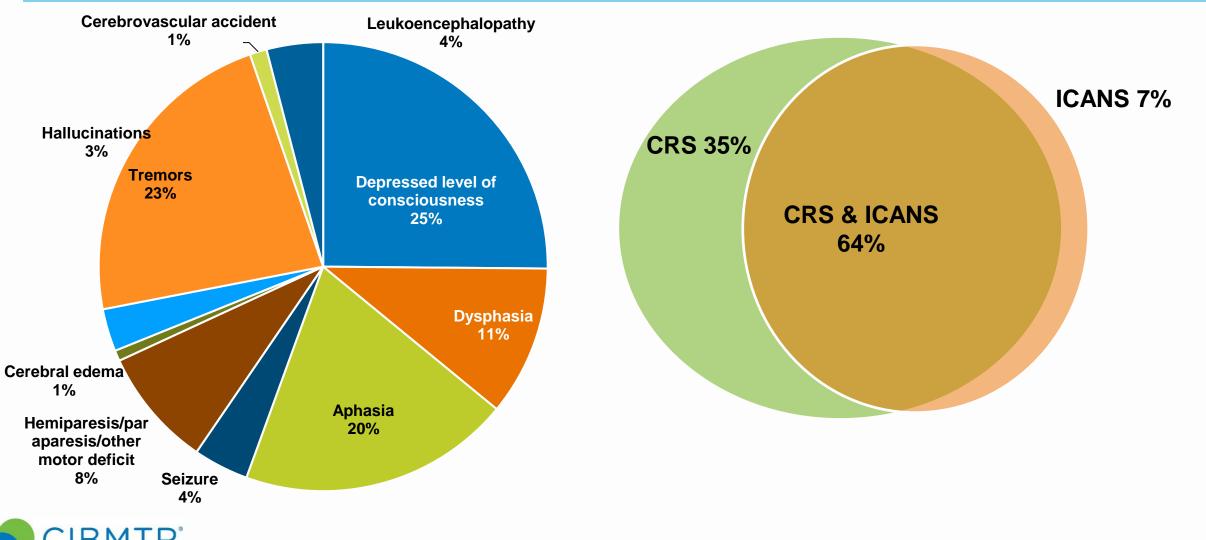
B: Acute Lymphoblastic Leukemia

C: Non-Hodgkin Lymphoma

Responses and Survival Outcomes with Tisagenlecleucel

CELLULAR IMMUNOTHERAPY DATA RESOURCE

В	Endpoint	CIBMTR (N=249),	ELIANA (N=79),
	•	% (95% Cl)	% (95 % Cl)
	BOR of CR	85.5%	82.3%
		(80.6, 89.7)	(72.1,90.0)
	MRD negative	99.1% (115/116)	100.0% (64/64)
		(95.3, 100)	(94.4, 100)
	DOR		
	At 6 mo	78.1%	80.8%
		(70.5, 84.0)	(68.0, 88.9)
	At 12 mo	60.9%	67.4%
,		(49.4, 70.5)	(53.2, 78.1)
	EFS		
	At 6 mo	68.6%	71.7%
		(62.0, 74.4)	(59.8, 80.6)
	At 12 mo	52.4%	57.2%
		(43.4, 60.7)	(44.5, 68.0)
	OS		
	At 6 mo	88.5%	88.6%
		(83.6, 92.0)	(79.3, 93.9)
	At 12 mo	77.2%	77.1%
		(69.8, 83.1)	(66.1, 84.9)


D	Endpoint	CIBMTR (N=152), % (95% CI)	JULIET (N=115), % (95% CI)
	ORR (CR+PR)	61.8% (53.6,69.6)	52.2% (42.7, 61.6)
	BOR of CR	39.5% (31.6, 47.7)	38.3%
	DOR	(,)	(
	At 6 mo	55.3% (42.2, 66.6)	66.6% (52.8, 77.3)
	At 12 mo	(42.2, 00.0) 48.4%* (33.9, 61.5)	(32.8, 77.3) 62.7% (48.7, 73.9)
	PFS	()	()
	At 6 mo	38.7% (30.5, 46.9)	39.0% (29.7, 48.2)
	At 12 mo	(30.3, 40.9) 26.4%* (17.2, 36.6)	(29.7, 48.2) 34.7% (25.7, 43.9)
	OS	(,,	(
	At 6 mo	70.7%	61.2%
	At 12 mo	(62.2, 77.6) 56.3% (44.2, 66.8)	(51.6, 69.5) 48.2% (38.6, 57.1)

*Indicates less than 10 patients at risk at this time point

Neurologic Symptoms and Relationship between ICANS and CRS

CIDIVIC CENTER FOR INTERNATIONAL BLOOD & MARROW TRANSPLANT RESEARCH

Conclusion

- Cellular Therapy Outcomes Databases are now being used to meet regulatory requirements.
- CT data offers unique statistical challenges:
 - Short follow-up (improving over time)
 - Imbalanced baseline data
 - Right-censored and left-truncated time-to-event data
- Outcomes in the real-world setting are comparable to what was observed in the pivotal trials

Acknowledgments

CT Registry

- Bronwen Shaw
- Patricia Steinert
- Mary Horowitz
- Kathryn Flynn
 Stats
- Zhen-Huan Hu (Kenny)
- Soyoung Kim

Data Ops

- Tiffany Hunt
- Jaime Santi
- Jenni Bloomquist
- Janet Brunner
- Mandi Proe
- Deborah Christianson

IT

- Laura Clements
- Matthew Prestegaard
- Erik Bergman
- Read Fritsch
- Eric Zink
- Simeona Trayanov
- Thomas Degen
- Kristina Bloomquist

Business Ops

- Carlos Litovich
- Robert Thompson
- Sharniece Covill

Research Funding:

- National Cancer Institute CIDR (U24 CA233032)
- Kite, a Gilead Company
- Novartis
- Bristol Myers Squibb

- Patients
- Participating centers

19