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Agenda

 Introduction

– Motivational example - the google flu story

– Why the hype?

– What is machine learning?

 Introducing key concepts

– Performance evaluation

– Cross-validation

– Bias-Variance-Tradeoff

– The bootstrap
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Agenda (continued)

 Machine Learning techniques

– Penalized regression

– Trees, Bagging, Random forests, and Boosting

– Finding subgroups

– Unsupervised learning
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The google flu story
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“Because the relative frequency of 

certain queries is highly correlated with 

the percentage of physician visits in 

which a patient presents with 

influenza-like symptoms, we can 

accurately estimate the current level of 

weekly influenza activity in each region 

of the United States, with a reporting 

lag of about one day.”

Social Media in Action – the google flu story

February, 2009
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 “Google web search queries can be used to 
estimate ILI percentages accurately in each 
of the nine public health regions of the United 
States. Because search queries can be 
processed quickly, the resulting ILI estimates 
were consistently 1–2 weeks ahead of CDC
ILI surveillance reports. The early detection 
provided by this approach may become an 
important line of defense against future 
influenza epidemics in the United States, and 
perhaps eventually in international settings.”

09-Nov-20
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Social Media in Action

ILI = Influenza-like illness
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Triumph of Big Data

United States Flu Activity

Influenza estimate
Google Flu Trends 

Estimate

United States Data

Modeled 

Data

Prediction

 “… simple models and big 

data trump more-elaborate 

analytics approaches.”
 A. McAfee, E. Brynjolfsson

 Harvard Business Review, 90

 Oct, 2012, p. 64



Social Media in Action

09-Nov-20
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Models built on 

data from 2003-

2008.


Predictions 

become worse 

over time.





09-Nov-20
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Social Media in Action

14 Mar 2014

Large errors in flu 

predictions were 

largely avoidable, 

which offers lessons 

for the use of big 

data.



Why the hype?
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Hype Cycle for Emerging Technologies 
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Machine learning community has made 
great progress on many problems!
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Those problems are very different to 
“Pharma problems”!

 Machine learning successfully applied in high signal to noise settings 

– E.g. Image recognition

– Easy to classify

– Lots of available data (e.g. online data bases, Reinforcement learning)

 “Problems” in pharma are oftentimes nothing like this

– Low signal to noise

– Hard to classify (When exactly is patient A doing better than patient B?)

– “Inherent” randomness

– Data generation is time consuming and expensive
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What does machine learning even 
mean?

15



Definitions
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Automating intellectual 

tasks normally performed 

by humans

Giving computers the ability 

to ‘learn’ without being 

explicitly programmed

A class of ML exploiting many 

layers of non-linear 

information processing 

Alan Turing (1950): a machine is “intelligent” if it can make a human 

believe that it is human



ML vs(?) stats - pretty much the same 
thing?
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18 https://www.nejm.org/doi/pdf/10.1056/NEJMc1906060?articleTools=true

https://www.nejm.org/doi/pdf/10.1056/NEJMc1906060?articleTools=true
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https://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/

https://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
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https://www.nature.com/articles/nmeth.4642

Or are there distinct differences?

https://www.nature.com/articles/nmeth.4642
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Frank Harrel: https://www.fharrell.com/post/stat-ml/

https://www.fharrell.com/post/stat-ml/


People often mean different things 
when comparing the two

 Some focus on the difference in application ...

– Using a linear model for prediction

– You are “doing Machine learning”

– Using a linear model for inference

– You are “doing statistics”

 Others focus on differences of the underlying 

methodology/philosophy
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Culture = Maths/Stats versus Computing Science department

How did it all start? Maybe here...



The Two Cultures
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X Nature Y

Nature

X
Explicitly specified 

stochastic model
Y

«Data modeling culture»

• Simple models with interpretable parameters

• Emphasis on interpretability and inference

• Nature is a black box

«Algorithmic modeling culture»

X “Trained” algorithm Y

• Complex models that are trained rather than explicitly specified

• Emphasis on prediction rather than interpretability



Leo Breiman’s opinion
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 Model validation based on goodness of fit and residual examination –

should be based on predictive accuracy

 Led to irrelevant theory and questionable scientific conclusions

 Kept statisticians from using more suitable algorithmic models and from 

working on exciting problems

 Estimated 98% of statisticians follow this approach

 The goal should be accurate information, not interpretability



Comments on the machine learning 
culture

• In 2001 Breiman claimed about 2% of statisticians would follow the machine 

learning or algorithmic  approach 

• However, since then a large literature has developed in statistical machine 

learning

• More recent approaches combine realistically complex statistical models with 

the scalability of machine learning algorithms

26



Statistical learning forms a bridge 
between the two cultures
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Model performance evaluation



Setting

Binary prediction problem

Given predictors 𝑿, predict binary outcome (or class) 𝐘 ∈ {𝟎, 𝟏}

Scoring classifier, e.g. predicted class probability ෝ𝒑 = 𝑷{(𝒀 = 𝟏) and a threshold criteria (e.g. 
𝒀 = 𝑰 ෝ𝒑 > 𝟎. 𝟓 ∈ {0,1}).

Simple Example: Identify responders/non-responders at week 16 by baseline characteristics, 

e.g. demographics, disease severity, mechanistic or genetic markers.
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Predictive performance of models

 What is “good performance”? 
 different performance metrics

 How to find out if your model is doing well?
 Model validation strategies:

hold-out data set, Cross Validation (CV), ...

 How to make your model do well?
 bias-variance tradeoff, regularization, preventing overfitting
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What is good performance?
Performance metrics
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Many ways to look at a 2x2 
contingency table...

 Many performance metrics exist. Choose wisely!
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True Class

Positive Negative
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Positives

False 

Positives

Negative
False 

Negatives

True 

Negatives

Column Total P N

𝑌 ∈ {0,1}

𝑌 ∈ {0,1}



Accuracy 
weights each sample in the same way

 Can be misleading in case of class imbalance (if 95% of samples are 

negative, we can achieve 95% accuracy, by always predicting “negative”)

33

True Class

Positive Negative

P
re

d
ic

te
d

 

C
la

s
s Positive
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Positives

False 

Positives

Negative
False 

Negatives

True 

Negatives

Column Total P N

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

Σ

𝑌 ∈ {0,1}
 𝑌
∈
{0
,1
}

# of predictions

# of correct 

predictions

𝑴𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑹𝒂𝒕𝒆 = 𝟏 − 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

Σ



True/False Positive Rate - TPR/FPR condition on the true label
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True Class
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P
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False 
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Column Total P N

𝑻𝑷𝑹 =
𝑻𝑷

𝐏

𝑭𝑷𝑹 =
𝑭𝑷

𝐍

 Important for ROC curves

 Note alternative terminology: TPR = sensitivity = recall, 
FPR = 1-specificity

TPR = true positive rate, FPR = false positive rate

 𝑌
∈
{0
,1
}

𝑌 ∈ {0,1}

# positives

# negatives



Pos/Neg Predictive Value – PPV/NPV condition on the predicted label
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True Class

Positive Negative

P
re

d
ic

te
d

 

C
la

s
s Positive

True 

Positives

False 

Positives

Negative
False 

Negatives

True 

Negatives

Column Total P N

𝑷𝑷𝑽 =
𝑻𝑷

𝑇𝑃 + 𝐹𝑃

𝑵𝑷𝑽 =
𝑻𝑵

𝐹𝑁 + 𝑇𝑁

 Note alternative terminology: PPV = precision

 Conditioning on predicted label can be useful in situations with 
high imbalance (e.g. diagnostic screening or information retrieval)

PPV = positive predictive value, NPV = negative predictive value

 𝑌
∈
{0
,1
}

𝑌 ∈ {0,1}

# of predicted negatives

# of predicted positives

𝑭𝑫𝑹 = 𝟏− 𝑷𝑷𝑽

Positive 
predicted

Negative 
predicted
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 AUC integrates over all possible thresholds / predictions you could make

 AUC = P(Randomly-chosen positive is ranked more highly than a randomly-chosen negative)

 AUC close to 1 is optimal, AUC close to 0.5 is no better than chance

𝒀 = 𝑰 ෝ𝒑 > 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, 0.1, 0.2,… , 0.9, 1

Each threshold 

produces a new table!

𝑻𝑷𝑹 =
𝑻𝑷

𝐏

𝑭𝑷𝑹 =
𝑭𝑷

𝐍

ROC curve and Area Under Curve (AUC) 
sweep across range of possible thresholds of scoring classifier



Trade-off between measures and mis-
classification costs

 Resolving trade-offs is hard

 Beware of implicit resolutions – e.g. all weights equal (accuracy, ...)

 Make decisions based on the use case of the prediction algorithm. 

Unclear trade-offs often a warning sign of unclear use case.

 Think of consequences of prediction!

 Examples of different trade-off situations
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Mass screening for 
disease

First diagnosis of disease Treatment decision

- N (healthy) >> P 
(disease)

- FP will lead to costs of 

further diagnosis
- FN will leave people 

undiagnosed/untreated

- Patient presents with 
problems

- FP will lead to further 

tests
- FN will leave patient 

undiagnosed/untreated

- Should patient be treated?
- FP will lead to treating someone 

that will not respond 

- FN will not use treatment 
although would have responded



How to find out 
if your model is doing 
well?

 Model validation

38
Source: Shutterstock.com



How do we obtain performance 
measures?

 Distinguish between ...

– Model evaluation for model selection or model improvement (“tuning”)

FROM

– Final model evaluation

 Mixing model selection/improvement with final evaluation tends to overestimate 

the performance
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Hold-out test sets are the gold standard
for model evaluation

 Training and testing on the same data set will overestimate performance 

Don’t do this!

 The gold standard is to evaluate the trained, optimized and selected model on 

a hold-out test set once
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Hold-out data

http://gaunerzinken.info

Complete data set

Training data

1. Determine/select best model

Could perform Cross-Validation on training data

Training\Test

2. Predict

(once!)



Use n-fold cross-validation for tuning and 
hold-out testing for evaluation

41

Validation

Validation

Validation

Validation

Validation

Hold-out test

1) Cross-Validation for model selection (and/or tuning)

Gold standard for model evaluation

2) Train best model and evaluate performance on hold-out test set

Training data



Some words of caution

From: Validation in prediction research: the waste by data splitting by author Ewout

W. Steyerberg

 In the absence of sufficient sample size, independent validation is misleading and 

should be dropped as a model evaluation step.

– Independent validation in small samples, such as with 3 events among 10 patients, is 

merely window dressing.

– Validation studies should have at least 100 events to be meaningful. In Big Data, 

heterogeneity in model performance should be quantified rather than average performance.

 In small samples, we should accept that small size studies on prediction merely are 

exploratory in nature. We should use cross-validation and bootstrapping as more 

efficient approaches to assess average model performance.
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https://www.sciencedirect.com/science/article/pii/S0895435618304852#!


Bias-Variance Tradeoff
and how Machine Learning finds the balance
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Bias and variance tradeoff
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X

X



Bias and variance tradeoff
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X

X



Bias and variance tradeoff

46



Model 1: Linear model
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Bias and variance tradeoff
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Bias: The inability of a machine learning 
method to capture the true relationship
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Model 2: Flexible line



How do the two models compare?
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On the data from the other trial, the 
linear model wins!
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Variance: the difference in fits between data sets



The “flexible model” has low bias, but 
high variability
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The linear model has high bias, but low 
variability
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Summary of bias/variance tradeoff

 Bias: The inability of a machine learning method to capture the true 

relationship

 Variance: the difference in fits between data sets

The ideal algorithm has low bias, i.e. is able to accurately describe the true 

relationship. It should also have low variability, such that is produces consistent 

predictions across different datasets.
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Over-fitting can be understood 
as bias / variance trade-off
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Most machine learning methods use 
regularization to “tune” along the bias-
variance axis

 lasso, ridge regression → penalty parameter (lambda)

 nearest neighbor → n (number of neighbors to take into account)

 SVM → C (cost)

 decision trees → pruning criteria

 random forests → tree depth

 ...

 Often these hyper-parameters are tuned empirically 

(be aware of risk when tuning towards test set performance)
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The bootstrap
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The bootstrap

 Commonly used flexible and powerful statistical tool that can be used to 

quantify the uncertainty associated with a given estimator or Machine learning 

method

 For example: deriving confidence intervals on a single parameters
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R^2 = 0.58



Deriving confidence intervals

61

If we took many samples from the population, 95% of 

the confidence intervals build using those samples would 

include the true mean
Draw 100 values

Slide idea from Matthew E. Clapham

Calculate mean

Repeat n times

This generates a sampling distribution 

of means



Derive quantities of interest from 
resampling distribution
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97.5% 

percentile
2.5% percentile



Back to reality ...
We never know the true population parameters, so we cannot apply above’s

method!

We only ever have a single sample!
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Back to reality (2)

 Bootstrap approach allows us to use a computer to mimic the process of 

obtaining independent samples from the population

 We cannot repeatedly obtain independent data sets from the population, so 

instead we obtain distinct data sets by repeatedly sampling observations from 

original data set with replacement

 Each bootstrap data set is the same size as our original dataset

– Some observations may appear more than once in a given bootstrap dataset

– Some observation will not appear at all
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Simple bootstrap example

ID X

1 3

2 5

3 2
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ID X

2 5

3 2

2 5

ID X

2 5

1 3

3 2

ID X

3 2

3 2

1 3

ത𝑋1

ത𝑋2

ത𝑋𝐵

...



Bootstrapping the single sample we 
have

66

The single sample is the best (and only) information we 

have about the population
Sample values with 

replacement

Slide idea from Matthew E. Clapham

Calculate mean

Repeat n times

This generates a sampling distribution 

of means



Inference on bootstrapped resampling 
distribution
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2.5% percentile
97.5% 

percentile



Uses of the bootstrapping

 Estimating statistical parameters where data are non-normal

 Estimating parameters that lack a standard calculation (e.g. 95% CI on R-

squared)

 Can also be used to estimate the prediction error

 Essential to the idea of bagging and random forests

 Great to assess the consistency of your methods
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Conclusion and looking back

 We covered a lot
– Overview of machine learning

– Performance measures (2x2, accuracy, TPR, FPR, PPV, NPV, AUC, ...)

– Performance evaluation strategies (hold-out, cross-validation, ...)

– Overfitting / bias-variance tradeoff

– The bootstrap

 Many topics not covered here
– Evaluating multi-class predictions

– Evaluating continuous predictions

– Evaluating multi-dimensional / longitudinal / correlated or grouped predictions

– Learning curves (performance vs. # of training samples)

– Calibration of probabilistic predictions (calibration curves)

– Taking predictors apart to understand (opening the black box)

– ...

 Many predictive problems pose hard engineering problems (i.e. in practice) around seemingly simple 
concepts (i.e. in theory)
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Machine Learning Techniques



Agenda (continued)

 Machine Learning techniques

– Penalized regression

– Trees, Bagging, Random forests, and Boosting

– Finding subgroups

– Unsupervised learning
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Penalized Regression



Multiple Linear Regression

 Aim: Modelling of (linear) relationship between outcome and predictors:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖
with
– 𝑦𝑖 (𝑖 = 1,… , 𝑛): outcome

– 𝑥𝑖𝑘 (k = 1,… , 𝑝): covariate values for observation 𝑖

– 𝛽0, 𝛽1, … , 𝛽𝑝: regression parameters

– 𝜖𝑖 : error term / residual

 Least squares solution by minimizing:

|| 𝑦 − 𝑋𝛽||2 = 

𝑖=1

𝑛

𝑦𝑖 − 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝
2
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General idea of penalized regression

 Take a multiple linear regression model and add a “penalty term”.

 Penalization of the regression parameters:

=> Not a “full-grown” model anymore

 Advantages:

– Improvement in terms of prediction (making use of the bias variance trade-off).

– Allows estimation of regression parameters in the p>n case.

– It is still a parametric model (no “black box”).
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Ridge regression

Definition:

መ𝛽ridge = argmin
𝛽



𝑖=1

𝑁

𝑦𝑖 − 𝛽0 −

𝑗=1

𝑝

𝑥𝑖𝑗𝛽𝑗

2

+ 𝜆

𝑗=1

𝑝

𝛽𝑗
2

= argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 + 𝜆

𝑖=1

𝑛

𝛽𝑖
2

𝜆 controls the weight of the penalty:

 𝜆 → ∞ መ𝛽ridge = 0

 𝜆 → 0 መ𝛽ridge = መ𝛽𝑂𝐿𝑆 (=least squares estimate)

76

Least Squares part

Shrinkage 𝑳𝟐-penalty



Parameter paths
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𝝀 = 𝟏𝝀 → 𝟎

Ridge solution paths of a linear 

regression model

Least Squares estimate (excluding 

intercept) is at 𝜆 → 0.



Some notes on ridge regression

 In the penalty term, 𝛽0 is not included to make it robust against adding a 

constant term to y.

=> Center y (or estimate 𝛽0 by ത𝑦 =
1

𝑛
σ𝑖 𝑦𝑖) and then estimate the ridge 

coefficients.

=> 𝑿 includes only p columns.

 Scaling of the predictors affects the ridge solutions.

=> Standardize the predictors

78

𝑥𝑖𝑗 =
𝑥𝑖𝑗

1
𝑛
σ𝑖=1
𝑛 𝑥𝑖𝑗 − ҧ𝑥𝑗

2



How do we find “the best” 𝝀?

Cross-Validation (e.g. 5-fold)

 For each 𝜆 ∈ 0.001, 0.01, 0.1, 0.5,… , 10 over some grid of values do the following: 

– For each shuffle find solution of min{ || 𝑦 − 𝑋𝛽||2 + 𝜆σ𝑖=1
𝑛 𝛽𝑖

2 } on training set and predict on 

validation set.

– Calculate pooled error MSE(𝜆) = || 𝑦 − 𝑋𝛽||2 over all validation sets.

 Find 𝜆 that minimizes the pooled 𝑀𝑆𝐸 𝜆 .
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Ridge regression coefficient estimate

Regression model with 10 covariates:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽10𝑥10 + 𝜀𝑖

80

መ𝜆𝑚𝑖𝑛 = 0.2 መ𝛽(λ = 0.2)

መ𝛽3(𝜆)
መ𝛽2(𝜆)

መ𝛽1(𝜆)

Ridge estimate (excluding intercept): 𝜷 = (-1.66, 1.06, 0.64, 0.01, 0.002, -0.02, 0.02, -0.01, -0.02, 0.01)



Lasso Regression
(Least absolute shrinkage and selection operator)
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(source: http://statweb.stanford.edu/~tibs/lasso.html)



Lasso Regression (Tibshirani, 1996)

Definition:

𝛽ridge = argmin
𝛽



𝑖=1

𝑁

𝑦𝑖 − 𝛽0 −

𝑗=1

𝑝

𝑥𝑖𝑗𝛽𝑗

2

+ 𝜆

𝑗=1

𝑝

|𝛽𝑗|

= argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 + 𝜆

𝑖=1

𝑛

|𝛽𝑖|

𝜆 controls the weight of the penalty:

 𝜆 → ∞ 𝛽lasso = 0

 𝜆 → 0 𝛽lasso = 𝛽𝑂𝐿𝑆 (=least squares estimate)
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Least Squares part
Shrinkage 𝑳𝟏-penalty



Lasso paths
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𝝀 = 𝟎. 𝟎𝟏𝟓

መ𝛽2(𝜆)

መ𝛽3(𝜆)

መ𝛽1(𝜆)

LASSO solution paths of a

linear regression model

Best 𝜆 found through Cross-validation: 
መ𝜆 = 0.015.

𝜷 = (-1.78, 1.12, 0.65, 0, 0, 0, 0, 0, 0, 0)

Some parameters will be set to 0.      Variable selection!



Summary LASSO & Ridge Regression

 Standardize the predictors and center the response!

 Lasso and Ridge regression make use of the Bias-Variance tradeoff.

 Main advantage of LASSO: variable selection.

 Neither ridge regression nor the lasso will universally dominate the other.

 If there are only few “true” predictors, LASSO may be the better choice.

 Cross-validation may be used to determine the final model.
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Graphical representation - preparation

Ridge and lasso regression can be written as follows:

 Ridge regression:

argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 , 𝑠. 𝑡. |𝛽|2 ≤ 𝐶

 Lasso regression:

argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 , 𝑠. 𝑡. |𝛽|1 ≤ 𝐶

There is a direct connection between 𝐶 and 𝜆.
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Graphical representation
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Contours of || 𝑦 − 𝑋𝛽||2

LASSO

argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 𝑠. 𝑡. |𝛽|1 ≤ 𝐶

Contours of || 𝑦 − 𝑋𝛽||2

Ridge

argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 𝑠. 𝑡. |𝛽|2 ≤ 𝐶

Source https://bookdown.org/egarpor/PM-UC3M/lm-iii-shrink.html



Elastic Net (Zou and Hastie, 2005)

𝛽EN = argmin
𝛽

|| 𝑦 − 𝑋𝛽||2 + 𝜆 (1 − 𝛼)

𝑗=1

𝑝

𝛽𝑗
2 + 𝛼

𝑗=1

𝑝

|𝛽𝑗|

 If 𝛼 = 0 Ridge Regression.

 If 𝛼 = 1 LASSO.

 Do Cross-Validation to find the optimal 𝛼 ∈ [0, 1].

Main advantage of Elastic Net is that it encourages grouped variable selection 

(while e.g. LASSO tends to pick only one variable among correlated variables)
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Least Squares part
Elastic net penalty



Some final notes

 Software: R package “glmnet” allows to implement Ridge, Lasso, Elastic Net.

 Extension to generalized linear models in a straightforward way (by adjusting 

the likelihood and the link function).

 In case of p>n (more covariates than observations), the OLS estimate cannot 

be calculated. Adding a penalty term solves the issue.

 Several other extensions available (group lasso, fused lasso, ...)

 Bayesian interpretation of Lasso by implementing Laplace prior distributions for 

the regression coefficients.
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Data example

• Simulated data based on real study data

• Population: Patients with psoriatic arthritis

• Response: American College of 
Rheumatology 20 (ACR20) response (binary)

• Two groups: active treatment vs. placebo

• Additional covariates/predictors:
• Patient demographics and other baseline skin 

characteristics

• Background characteristics

• Laboratory values
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Trees, Bagging,
Random forests,
and Boosting



Regression trees

• Set-up: continuous response 𝒚 and predictors 𝒙𝟏, … , 𝒙𝒑.

• Goal: predict the response based on predictors.

• A tree is defined by (several) splits which result in branches.

• Each split is based on only one variable.

• Result: Predictor space is devided into distinct regions.

• Prediction: “Run” the new observation through the tree. Predict the mean 
response value of the leaf where the observation ends up.
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Regression trees
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1. First split is done at

age < 50 vs. >=50

2. Secon splits are based on 

BMI.

3. The predictions are the 

numbers on the top in each 

box.



Regression trees – algorithm

• Start from the root and go top-down.

• Split the data into two branches:

– For each predictor 𝒙𝑗 (j = 1,… , 𝑝), select the 

cut-point that leads to greatest reduction of the 

residual sum of squares (RSS).

– Select the predictor with the biggest reduction in 

RSS for the split.

• Repeat the splitting until some stopping 

criteria is met (e.g., each node has fewer 

observations than a limit).
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Classification trees

• Work basically the same way as regression trees.

• Set-up: Categorical response 𝒚 and predictors 𝒙𝟏, … , 𝒙𝒑.

• Goal: Predict the response category based on the predictors.

• Create a tree as done before.

• Prediction:

• Run through the tree

• take the most frequent class (mode) in the final leaf
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Classification trees – split criteria

Often used:

Gini index (a measure of total variance across the k classes)

𝐺 = 

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘 1 − Ƹ𝑝𝑚𝑘

with Ƹ𝑝𝑚𝑘 as proportion of observations in the 𝑚th leaf

which belong to the 𝑘th category.

Small if the Ƹ𝑝𝑚𝑘 are close to 0 or 1

(most observations in a leaf belong to the same category)
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Trees – discussion

• Easy to explain and display

• Can handle non-linearity

• Useful for exploratory and explanatory purposes 

• Usually not being used as a stand alone predictive 

model due to limited prediction accuracy.
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Using an Ensemble of models

As stated above, a single tree does not necessary lead to good predictions.

97

Combine several trees (or more generally, predictions 

based on some function 𝑓(𝑥)) and use the average over 

the trees for prediction.

Examples for ensemble methods:

• Bagging

• Random forests

• Boosting

Reduction of the variance



Bagging (Bootstrap Aggregating)
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Data

D2 ...D1 DB

f1 f2 ... fB

fbag

1. Sample

2. predict

3. combine

1. Repeatedly sample from training 

set.

2. Get single predictor of መ𝑓∗𝑏 𝑥
from the 𝑏th dataset.

3a. For continuous response,

average all the predictors as the

final መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵
σ𝑏=1
𝐵 መ𝑓

∗𝑏
𝑥 .

3b. For categorical response, use

majority vote for classification.



Bagging Discussion

• Bagging model

• Improves accuracy over prediction of a single tree.

• Hard to interpret the results.

• Important predictors can be identified by checking the impact on RSS or Gini index

or by counting the number of splits which are based on a specific predictor.

• Out-of-bag (OOB) error

• Can be calculated from the predictions based on OOB observations.

• Provides a valid estimate of the test error for the model.
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Random Forest
(Breiman, 2001)
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• Follow the same steps as in bagging.

• However add the following additional step:

At each split, randomly choose 𝑚 predictors out of the full 

set of 𝑝 predictors.

(Usually 𝑚 is set to 𝑝 or log2𝑝.)

• The random choice of predictors avoid strong predictors to 

dominate the lower nodes.



Random Forest – discussion

• Bagging may not reduce the variance enough:

Strong predictors may dominate the lower level of tree and hence induce 

correlation among the trees.

• Random forest

• Random predictor selection as well as bootstrap samples from data.

• This helps make the trees less correlated.

• If 𝑚=𝑝, then random forest is bagging.

• Variance importance measures available (to do variables selection)
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Boosting

Idea:

• Sequentially build up a model based on “weak learners”.

• The “ensemble” will create a powerful model.

• Use, for example, trees as learners.

Note the “sequential nature” as compared to bagging and random forests.
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Boosting with trees
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Start with
null model

• Start with መ𝑓 𝑥 = 0
• 𝑟𝑖 = 𝑦𝑖

Fit a tree 
per iteration

• Fit መ𝑓𝑏 based on data (X, 𝑟)

• መ𝑓 𝑥 ← መ𝑓 𝑥 + 𝜆 መ𝑓𝑏(𝑥)

• 𝑟𝑖 ← 𝑟𝑖 − 𝜆 መ𝑓𝑏(𝑥𝑖)

Output

• መ𝑓 𝑥 = σ𝑏=1
𝐵 𝜆 መ𝑓𝑏(𝑥)

• Incrementally build the ensemble by 

training each new model based on the 

residuals from the previous model.

• Main tuning parameters:
• Number of trees B.

• Shrinkage 𝜆 controls the learning rate, 

typical values: 0.01 or 0.001.

• Number of splits 𝑑 to control the 

complexity of the trees.  When d = 1, 

each tree is a stump.



Boosting – some remarks

• Boosting comes with great performance in many situations

(mostly greater performance to random forests and bagging).

• Many parameters that can be optimized (compared to random forests).

• Several variations available:

• AdaBoost (Adaptive Boosting, by Freund and Schapire 1997)

• Stochastic gradient boosting (Friedman, 1999)

• Gradient boosting (Friedman, 2001)

• ...
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Summary

• Decision trees are simple and interpretable models for regression and 

classification.

• However, they are often not competitive with other methods in terms of 

prediction accuracy.

• Bagging, random forests and boosting are good methods for improving the 

prediction accuracy of trees. They work by growing many trees on the training 

data and then combining the predictions of the resulting ensemble of trees.

• Random forests and boosting are among the state-of-the-art methods for 

supervised learning. However their results can be difficult to interpret.
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Finding subgroups



Overview

• Setting:

• One endpoint variable (for example, binary)

• Two treatment arms (placebo vs. active treatment)

• Several covariates (demographics, lab parameters, etc.)

• Goal: Finding subgroups of an increased treatment effect based on the 

covariates
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General procedure

• Identify most influential covariates:

• Test interaction between treatment group and covariates or

• Apply the virtual twins method or

• Implement causal forests.

• Do some graphical assessment of potential subgroups: Funnel plot

• Define a subgroups based on a decision tree.
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Data example - reminder

• Patient population: Patients suffering from 

psoriatic arthritis.

• Treatment groups: placebo vs. active treatment.

• Endpoint: musculoskeletal endpoint of 

American College of Rheumatology (ACR) 20 

response (binary).

• Covariates (continuous or binary):

• Patient demographics (age, BMI, etc.)

• Laboratory variables

• ...
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Test for interaction with treatment

Procedure:

• For each covariate: Fit a regression model with the following predictors:

• The treatment group.

• The covariate of interest.

• An interaction term of the two above.

• Test the interaction term for significance.

• Select all variables below a certain threshold (for example, p<0.05).

• Note: This is rather a “univariate” approach!
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Virtual twins
(Foster et al., 2011)

General idea: Create a virtual twin for each patient and 

analyze the difference:

• Select all placebo patients and fit a random forest.

• Select all treatment patients and fit a random forest.

• Predict outcomes using both random forests for all 

patients ( 𝑌1 and 𝑌0)

• Take the difference 𝑍 = 𝑌1 − 𝑌0 and fit another 

random forest on 𝑍.
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Causal forests
(Athey et al., 2019)

Fit a random forest to the data (including treatment 

group and all covariates).

However, use causal trees:

• They work the same way as “normal” trees.

• However, maximize the difference between 

treatment groups in each split.

After applying virtual twins or causal forests use 

some variable importance measure to select the 

most influential covariates.
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Funnel plot

• Visualization / tool to assess if there are any potential subgroups at all.

• Idea:

• Select a set of covariates.

• Build subgroups; in case of continuous covariates use cut-offs.

• Calculate the treatment effect for each subgroup.

• Display all treatment effects in one plot

• Great distances between dots indicate differences in subgroups.
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Data example: Funnel plot
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The blue dot represents 

the treatment difference 

in the overall population.

Potentially interesting 

subgroups.



Data example: selected variables
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Causal forests:

• Age

• BMI

• CASI

• HDLSI

• KSI

Virtual twins:

• Age

• BMI

• CASI

• HDLSI

• ASTSI

Let‘s take the first four 

overlapping covariates

(Note: This is just an 

ad-hoc solution!)



Data example: Create the tree
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Look at the 

treatment effects 

in the resulting 

subgroups



Unsupervised learning



Supervised vs. unsupervised learning

Supervised learning:
• Outcome variable / response: 𝒚 = (𝑦1, … , 𝑦𝑛)

• Predictors: 𝑿𝑇 = (𝑿1 , … , 𝑿𝑝)

• Goal: predict 𝒚 using 𝑿, resulting in ෝ𝒚.

• Idea: Minimize some loss function 𝐿 𝒚, ෝ𝒚 , for example, 𝐿 𝒚, ෝ𝒚 = 𝒚 − ෝ𝒚 𝟐

It is called supervised, because (in some training set) we know 𝒚.

Predictions for 𝒚 can be made based on new data (ෝ𝒚).

More generally:
• Assume a joint probability density Pr(𝒀,𝑿).

• We are interested in the properties of Pr(𝒀|𝑿).
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Supervised vs. unsupervised learning

Unsupervised learning:

We do not have any 𝒚 variables (no response).

We would like to characterize Pr(𝑿).

What does that mean?

• Find patterns.

• Find groups of subjects with similar characteristics.

• Find associations between variables.

• Combine variables to a smaller set of “latent” variables.

• ...
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Cluster analysis

• Goal: Identify groups or “clusters” of subjects.

• Subjects within the same clusters are supposed to be “similar”.

• Subjects from different clusters are supposed to be “different”.

• How do we identify clusters (what does “similar” mean)?

• Similarity is based on 𝑿 (usually all variables in the data set).

• We need some distance measure.

• Different distance measures lead to different results

• What is this useful for?

• Descriptive analysis of your (patient) population.

• Identification of subgroups with different characteristics.
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Two-dimensional example
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Goal: Find groups of 

observations which 

are “similar”.



Two-dimensional example
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Goal: Find groups of 

observations which 

are “similar”.



Degree of similarity

To identify similar patients, we need to define similarity.

Pairwise definition for subjects 𝑖 and 𝑖′:

𝐷 𝑥𝑖, 𝑥𝑖
′ = 

𝑗=1

𝑝

𝑑𝑗(𝑥𝑖𝑗, 𝑥𝑖′𝑗)

Most common choice is the

Euclidean distance:

𝑑𝑗 𝑥𝑖𝑗, 𝑥𝑖′𝑗 = 𝑥𝑖𝑗 − 𝑥𝑖′𝑗
2

in case of quantitative (continuous) variables.
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Degree of (dis)similarity
Alternative definitions (examples)

Continuous variables:

𝑑𝑗 𝑥𝑖𝑗, 𝑥𝑖′𝑗 = |𝑥𝑖𝑗 − 𝑥𝑖′𝑗|

Ordinal variables: replace the 𝑀 categories with
𝑖 − 1/2

𝑀
, 𝑖 = 1, … ,𝑀

and treat them as continuous variables.

Nominal variables:

𝑑𝑗 𝑥𝑖𝑗, 𝑥𝑖′𝑗 = ൝
1, 𝑥𝑖𝑗 ≠ 𝑥𝑖′𝑗
0, 𝑥𝑖𝑗 = 𝑥𝑖′𝑗
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Degree of (dis)similarity
Some additional remarks

• Weights can be added to the dissimilarity measure:

𝐷 𝑥𝑖, 𝑥𝑖
′ =

𝑗=1

𝑝

𝑤𝑗 ⋅ 𝑑𝑗(𝑥𝑖𝑗, 𝑥𝑖′𝑗); 

𝑗=1

𝑝

𝑤𝑗 = 1

• Choice of the dissimilarity measure seems to be more important than the 

clustering algorithm.

• Distance measures should be chosen wisely.

• Clinical input may be very helfpul.

• Using equal weights to all variables (𝑤𝑗 = 1/ ҧ𝑑𝑗) may not always be the best choice.
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Clustering algorithm: k-means

Assumptions:

• Only continuous variables

• Euclidean distance as dissimilarty measure

Thus, we would like to minimize “within cluster” point scatter:

𝑊 𝐶 = 

𝑘=1

𝐾



𝐶 𝑖 =𝑘



𝐶 𝑖′ =𝑘



𝑗=1

𝑝

𝑥𝑖𝑗 − 𝑥𝑖′𝑗
2

𝐶(𝑖) = 𝑘 assigns observation 𝑖 to cluster 𝑘.
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Clustering algorithm: k-means

The algorithm looks as follows:

1. Given a set of clusters, find the mean of each cluster to minimize the variance 

within the cluster around that mean.

2. Given these means, assign each observation to the cluster with the closest 

mean.

3. Repeat steps 1 and 2 until there is no change.
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Animated visualization
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Some remarks on k-means

• Computationally simple, but very expensive.     Greedy descent algorithms 

are being implemented.

• We need to decide on 𝑘 and start with initial values (e.g., random values).

• How to choose 𝑘?

• Sometimes defined by research question.

• Use 𝑊 𝐶 as a criterion. However, it will always decrease with increasing 𝑘.

• Stop, for example, if the decrease gets sufficiently small (use for example the Gap 

statistic (Tibshirani, 2001)).
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Extensions and other algorithms

• Include categorical data by:

• using some recoding (dummy coding) or preferably by

• adjusting the dissimilarity measure (for example, Gower distance)

• Hierarchical clustering (do the clustering in hierarchical steps)

• k-medoids using actual data points as center of clusters (commonly used 

algorithm: Partitioning Around Medoids (PAM)).

• Self organizing maps. Idea:

• Projection to a low-dimensional space (similar to principal component analysis).

• Finding clusters on this low-dimensional space.
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References

The slides on machine learning techniques are mainly based on:
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2nd edition.

Additional references can be found on the next slide.
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