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Our housekeeping

2

Event will be recorded

Presentations & recording will be made available to the
audience

Shhhhhh....

Please mute yourself (22 unless you are speakin
\ W

2

Q&A:
- After each presentation we will have time for questions

 Please enter your questions into the chat during the talk or raise
your hand during the Q&A to ask your question.

* In case of any problems during the event, please contact
bibiana.blatna@novartis.com
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Disclaimer

The views expressed in this presentation are those of the
presenters and do not necessarily represent the views of,
and should not be attributed to, the presenters’ affiliations.
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Agenda

Introduction to multiple testing

14:00 — 14:45 Dong Xi
14:45 — 16:15 Graphical approaches to multiple testing
Frank Bretz
Break
20 _ 17 Extensions to group sequential designs
HERRI el Ekkehard Glimm
17:30 — 18:00 Extensions to pooled analyses from two studies

Dong Xi
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Learning objectives

Learn about advanced problems of multiplicity in drug
development

Get familiar with the closed test procedure, a general
construction method for multiple test problems

Be able to tailor advanced multiple test procedures to given
study objectives, and to visualize and implement the
graphical approaches
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Agenda

Break
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P(at least one Type | error)

Type | error rate inflation
Test m independent hypotheses

Probability of at least one Type | error
for different numbers of hypotheses m

2 Probability of making
1-1-a™ Type | error increases

- as m or « increases
- For large m we
. almost surely reject
S 7 iIncorrectly at least
N one of the true null
S o asol hypotheSeS
s -
2 | i I I T | |

0 20 40 60 80 100
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Sources of multiplicity

8

Multiple test problems are very common in clinical trials,
such as the comparsion of a new treatment with

« Several other treatments

* A control for more than one endpoint

* A control for more than one population
* A control repeatedly in time

Clinical trials often face several sources of multiplicity at
the same time

Target: To control the familywise error rate (FWER)
Pr(reject at least one true null) < « under any
configuration of true/false null hypotheses
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Common multiple test procedures

9

Without With
Single Step Bonferroni Simes Dunnett
Stepwise Holm Hochberg Stepdown Dunnett

All these methods treat the hypotheses as equally important

Remarks on the performance of the procedures

- Stepwise methods are more powerful than single step methods

- Single step methods use the same critical values for all hypotheses whereas
stepwise methods use different critical values

- Simes-based methods are more powerful than Bonferroni-
based methods

 Accounting for correlations could lead to more powerful procedures
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An advanced clinical trial example in COPD
Late phase development of a new compound: Background

Objective: Show that a new drug is better than a control
drug in patients with chronic obstructive pulmonary
disease (COPD) for two endpoints P

* Primary endpoint: FEV1 (forced expiratory volume in one second)
- Continuous variable, where larger values indicate better efficacy

« Secondary endpoint: Time to exacerbation S
- Time until the event of interest has been observed

New drug is available at two doses D,, D, that are
compared with the control C

= 51 G

1

C
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An advanced clinical trial example in COPD
Late phase development of a new compound: Hypotheses

Two sources of multiplicity

- Comparing two doses with control for each of two endpoints

Resulting in four hypotheses of interest
- Two primary hypotheses H,, H, (comparing D, D, with C for FEV1)

» Two secondary hypotheses Hs, H, (comparing D, D, with C for time
to exacerbation)

Dose 1 Dose 2

Note that the four hypotheses
are not equally important Primary:
* The secondary hypothesis H; (H,)

should be tested, only if the corresponding
primary hypothesis H; (H,) is rejected

Secondary:
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An advanced clinical trial example in COPD
Late phase development of a new compound: Summary

12

Need for suitable multiple test procedures

Standard multiple test procedures could be applied, but do
not reflect the relative importance of the two endpoints

* For example, the Bonferroni test would treat FEV1 and time-to-
exacerbation as equally important, in contrast to their relative order

We need a multiple test procedure that reflects the relative
importance of the hypotheses, as driven by clinical
considerations

Graphical Approaches | BBS | March 29, 2022



Summary

Testing multiple hypotheses may lead to an inflation of the
Type | error rate

 That is, testing individual hypothesis at level a leads to overall Type |
error rate larger than «a

Multiple test problems are very common in clincial trials
and multiplicity adjustment should always be considered

Common multiple test procedures treat all hypotheses
equally and do not address the underlying structure of the
test problem
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Notation

Assume a “family” of m inferences
Parameters of interest are 64, ..., 0,,

Individual null hypotheses
Hl: 91 — O, ...,Hm: Hm =0

Individual test statistics ¢4, ..., t,;, with unadjusted p-values
P1) - Pm

Ordered p-values p(1y < p2) < * < Pem)

Ordered null hypotheses according to ordered p-values
H(l): vee ) H(m)
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Closed test procedure (CTP)

Operational definition for m = 2 null hypotheses

Schematic diagram for m = 2 null hypotheses H,, H,
Hi, =H; NH,

e

H, H>

Rejection rule: Reject H; (H,), only if both H; (H,) and H,
are rejected, each at local level a
Operationally

- Test Hy, at local level a (using a suitable test): If rejected, proceed;
otherwise stop

- Test H; and H, each at local level a: Reject H; (H,) overall if
H,, and H, (H,) are rejected locally

This controls FWER as
P(at least one rejection) < P(reject the global null) < «
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Closed test procedure
Venn-type diagram for m = 2 null hypotheses

Different parts indicate different null hypotheses as shown above

Question: How do we test them?
- Test H, using Bonferroni, Simes, Dunnett, etc. at level a
- Test H;, H, each using a level «a test
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CTP using Bonferroni
Holm procedure

17

Using Bonferroni to test H,,
rejectifp; < a/2orp, < a/2,
e, ifpy < a/2 Pa) < a/2

/\

If we fail to reject H,,, stop as
P2 =«

neither H, or H, can be rejected P1=
according to the CTP

If we reject Hy,, then
° H(q) is rejected automatically as py < a/2 < «a

- we only need to test H,) atlevel a, i.e., reject H,) if pip) < «

This results exactly in the Holm procedure
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CTP using Simes

Hochberg procedure

18

Using Simes to test H,,,
rejectif piy < a/20rpp) <a

Py <a/2orpy <a

If we fail to reject H,,, stop /\

If we reject H;, because pi<a P, <a
P2 < a, then H(l),H(z) are
rejected automatically as p(;) < p() < @, and stop

If we reject H,, because p;) < a/2 but p;) > a, we then
reject H,y but fail to reject H(,y and stop

This results exactly in the Hochberg procedure for m = 2

* For m > 2 the Hochberg procedure is less powerful than the CTP
using Simes tests
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CTP using Dunnett

Stepwise Dunnett test

19

Using Dunnett test to test H;,,
rejectif p; < cy 4 0rpy < Cayq,

e, ifpyy < cyq P) < C2q

* Cpq (a/2 < ¢ 4 < a) denotes the critical /\

value for the Dunnett test to compare
two treatment with a control P1=a P <a

If we fail to reject H,,, stop

If we reject H,,, then
* H(yy is rejected automatically as p(y) < ¢4 <

- we only need to test H,) atlevel a, i.e., reject H,) if pip) < «

This results exactly in the stepwise Dunnett procedure
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CTP using weighted Bonferroni (1)

Fixed sequence procedure

20

Two ordered hypothese H; = H,

Using weighted Bonferroni test to pr<aorp, <0
test H;,, rejectifp;, <aorp, <0 /\
If we fail to reject H,,, stop p1<a p2 < a

If we reject Hy,, then
* H, is rejected automatically as p; < a
- we only need to test H, atlevel a, i.e., reject H, if p, < «

This results exactly in the fixed sequence procedure
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CTP using weighted Bonferroni (2)

Fallback procedure

21

Two ordered hypothese H; = H,

Using weighted Bonferroni test to p1 < a, orp, < a,
test H,, rejectifp; < a; orp, < a, /\
* For the weights, a; + a, = «

P1 = 0y P2=a
If we fail to reject H,,, stop

If we reject Hy,

- Because p; < a4, then H; is rejected automatically and H, is tested
at level a

- Because p, < a,, then H, is rejected at level @ and H, is tested at
level o,

This results exactly in the fallback procedure
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Closed test procedure
Venn-type diagram for m = 3 null hypotheses
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Closed test procedure
Formal definition for m null hypotheses

For m > 2 many intersection hypotheses have to be tested

CTP considers all intersection hypotheses

H=() H,  Jc(,.m
i€]
* Any suitable test can be used to test H; at local level a

An individual H; is rejected at level « if all hypotheses H;
formed by intersection with H; are rejected at local level a

This controls FWER as
P(at least one rejection) < P(reject the global null) <

CTPs satisfy certain optimality criteria and there is no
reason why not to use a CTP
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Summary

24

CTP is a general principle to construct powerful multiple
test procedures

In a CTP, one rejects an individual null hypothesis H; at
overall level a by rejecting all intersection null hypotheses
H; € Hy, including J = {i}

Many common multiple test procedures are CTP, including
* Holm, Hochberg, step-down Dunnett, ...

The number of intersection hypotheses is 2™ — 1

* For large m, this number increases rapidly and CTPs are in general
difficult to apply
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Q&A

Any questions?



Agenda

Break
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Outline

Graphical approaches to multiple testing
- Conventions

« Common multiple test procedures

» Formal description

« COPD example revisited
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Outline

Graphical approaches to multiple testing

» Conventions
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Graphical approach

Heuristics

As before,

* Null hypotheses H,, ..., H,,

- Initial allocation of the significance level a; + -+ a,,, = «a
* Unadjusted p-values p4, ..., p,,

a—propagation

If a hypothesis H; can be rejected at level «; (i.e. p; < «;),
reallocate its level a; to the remaining, not yet rejected
hypotheses (according to a prefixed rule) and continue
testing with the updated a levels
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Graphical approach

Conventions

@ Hypotheses H;. .. .. Hpm @ @
represented as nodes

@ Split of significance level a £ 2
as weights a1....,anm Bonferroni @ @

© ‘o propagation” through a 1

2 2
weighted, directed edges
Holm @ @

1
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Outline

Graphical approaches to multiple testing

« Common multiple test procedures
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Graphical approach

Bonferroni test and Holm procedure: m=2

32

Bonferroni: no a—propagation, i.e. no edges between nodes

o

@ G

Holm: includes a—propagation and is thus more powerful

o .
2 2

Ol
1
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Graphical approach

Holm procedure: Example with a« = 0.025

Test H; at level a/2 Test H, at level a/2
7 =0.0125 1 5 = 0.0125

p1 = 0.04 1 ps = 0.01
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Graphical approach

Holm procedure: Example with a« = 0.025

p, < a/2 = reject H,
5 =0.0125 1 5 = 0.0125

B

p1 = 0.04 r ps = 0.01
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Graphical approach

Holm procedure: Example with a« = 0.025

Propagate a/2

o = 0.025 1
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Graphical approach

Holm procedure: Example with a« = 0.025

Remove node for H,

e = 0L02D

()

p1 = 0.04
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Graphical approach

Holm procedure: Example with a« = 0.025

Test H, atlevel a
p; > a = retain H; and stop

a = 0.025

p1 = 0.04
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Graphical approach
Weighted Holm procedure

Use ay,a, with a; + a, = ainstead of a; = a, = a/2

(V1 1 8%s)
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Graphical Approach

Fixed sequence test

39

Assume H; - H,

* Thatis, m = 2 and H, is more important than H,
* Then the fixed sequence procedure is visualized as

Qv 0
% D
) H2)

Similarly, assume for m = 3 that H; - H, — H;,

* Then the fixed sequence procedure is visualized as

(Y 0 0
e . B .
) () M)

« Caution: If H; cannot be rejected, we cannot test H,, H; regardless of
their p-values
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Graphical Approach

Fallback procedure

Assume H,; —» H, = H;, and split the significance level as
A =a, =a3 =a/3

Following the fallback procedure, we could have for example:

[ (a1 (]
3

Initial 1
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Graphical Approach

Improved fallback procedures

Original fallback

¢4 g 3
(o ——(te———(Ha) (Wiens, 2003)
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Graphical Approach

Improved fallback procedures

Original fallback

4 2 r3

() ——(te)———(th) (Wiens, 2003)
Improved fallback |

e 3 1 3

@\1 L@;ﬁ:—_:ﬂ;) V= wia
|
5 _ (Wiens & Dmitrienko, 2005)
1—=
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Graphical Approach

Improved fallback procedures

Original fallback

1

Improved fallback |

rq

[ay] o3

N B ¢ W B P
3 1 ]
(k)

Improved fallback Il
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(Wiens, 2003)

gt fia
1= 0t ez

. (Wiens & Dmitrienko, 2005)

e—0

(Hommel & Bretz, 2008)



Graphical Approach
Parallel gatekeeping procedure (Dmitrienko et al., 2003)

H,, H, are two primary hypotheses

* For example, comparison of a new drug with placebo for two primary endpoints
H;, H, are two secondary hypotheses

* For example, comparison of a new drug with placebo for two secondary endpoints

Parallel gatekeeping: Testing of secondary hypotheses occurs if at
least one of the primary hypotheses is rejected

a
2 2
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025

py = 0.01
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025

pz = 0.001 |
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025

ps = 0.001
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025

5
1
Hs) ps =004

] [
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025

7

1

L J

@. ps = 0.04

¥

2
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Graphical Approach
Parallel gatekeeping — Example with a = 0.025

. ps = 0.04
¥
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Outline

Graphical approaches to multiple testing

» Formal description
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Graphical approach

Formal definition

Define
* Initial levels a = (aq, ..., ay) With X% a; = a € (0,1)
- m x m transition matrix G = (g;;)

where g;; is the fraction of the level of H; that is propagated to H; with
0< gl] <1, gii = 0, and Z;rl:lgl] <1 VvVi=1,...m

(G, a) determine a graph with an associated multiple test
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Graphical approach
Update algorithm

Set]={1,..,m}
® Selecta ) suchthatp; < a;
If no such ; exists, stop; otherwise reject H;
® Update the graph:
] =J\U}

@ ay+agip, €] |
0, otherwise

gemt9eigim
Jom = 1-9¢;9¢
0, otherwise

) 1,”,m E],w”r,tm,ggjgﬂ) <1

® Goto Step 1
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Graphical approach

Main result

The initial levels a, the transition matrix G, and the
algorithm define a unique sequentially rejective test
procedure that controls the FWER at level a

Remarks:

* Any multiple test procedure derived and visualized by a graph (G, a)
Is based on the closed test principle

* The graph (G, a) and the algorithm define weighted Bonferroni tests
for each intersection hypothesis ina CTP

 The algorithm defines a shortcut for the resulting CTP, which does
not depend on the rejection sequence
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Outline

Graphical approaches to multiple testing

« COPD example revisited
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COPD example revisited
Background

60

Obijective: To demonstrate that either dose D, or D, of a
new drug is better than control € in COPD patients for two
endpoints

* Primary endpoint: FEV1

« Secondary endpoint: Time to exacerbation

There is a natural order in that a primary endpoint is more
important than a secondary endpoint

* Thus, we would like to test the primary null hypothesis first; only if that
is rejected, we test the secondary hypothesis

Both doses are equally important

 Thus, both doses are simultaneously tested against the control
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COPD example revisited

Building a multiple test procedure: Hypotheses

iy ) )

secondary @

low dose high dose
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COPD example revisited

Building a multiple test procedure: Initial levels «

o

2

«
2
. B

secondary @

0 0

low dose high dose
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COPD example revisited

Building a multiple test procedure: a—propagation

o &
2 2
primary
secondary
0 a=( % 0 0) 0
low dose 0 0 1 0 high dose

(0 0 0 1

G = 0O 1 0 O

1 0 0 O
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COPD example revisited

Building a multiple test procedure: Alternative a—propagation

Q 1/2
5 /

primary
1/2
secondary
0 a=(; 7 0 0)
1 1
low dose 0 5z 5 0
1 1
¢=|2z 0 0 3
0O 1 0 O
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COPD example revisited

Building a multiple test procedure: General solution

1 " CI-Q(: o — Cl'1)

a=( a 0 0) Resulting graph depends on only three
parameters a4, y,, and y, that can be fine-
0 n 1-n 0 tuned based on:
G = v2. 0 0 1=, « further clinical considerations, or

0 1 0 0
1 0 0 0
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COPD example revisited

Numerical example with a = 0.025

primary 2 1/2 3
p, = 0.01

low dose high dose
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COPD example revisited

Numerical example with a = 0.025

primary 2 1/2 2
pi =001 (N
secondary
ps = 007 (Hs

low dose high dose

67 Graphical Approaches | BBS | March 29, 2022



COPD example revisited

Numerical example with a = 0.025

primary 2 1/2 2
p1 =0.01 (Hy
secondary
ps = 0.07 @

low dose high dose
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COPD example revisited

Numerical example with a = 0.025

primary 1/2 4

low dose high dose
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COPD example revisited

Numerical example with a = 0.025

primary
secondary
pa = 0.07 @
% 12 0

low dose high dose
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COPD example revisited

Numerical example with a = 0.025

primary
1/3
2/3
secondary
p3 = 0.07 ps = 0.001
% 1/2 0

low dose high dose
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COPD example revisited
SAS: Main function

/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 x n vector)
a: initial significance level allocation (1 x n vector)
g: weights for the edges (n x n matrix)
p: observed p-values (1 x n vector) */
START mcp(h, a, g, p):
n = NCOL (h) ;
mata = a;

crit = 0;
DO UNTIL (crit = 1);
test = (p < a);

IF (ANY (test)) THEN DO;
rej = MIN(LOC (test#(1l:n)));
hlrej] = 1;
gl = J(n, n, 0);
DO i = 1 TO n;

ali] = al[i] + alrejl*glrej,il;
IF (gli,rejl*glrej,i]l<1l) THEN DO j = 1 TO n;
glli, 3] = (gli,3] + gli,rejl*glrej,j1)/ (1 - gli,rejl*glrej,il);
END;
gl(i,i] = 0;
END;
g = gl; glrej,] = 0; gl,rej] = 0;
alrej] = 0;

mata = mata // a;
END;
ELSE crit = 1;
END;
PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(g,0.01));
FINISH;

72 Graphical Approaches | BBS | March 29, 2022



COPD example revisited
SAS: Example call

PROC IML;
START mcp (h,

FINISH;

a,

g,

pP);

/*** Numerical example ***/

h = {0 0 0
a = {0.0125 0.0125 O
g = {0 0.5 0
0.5 0 0
0 1 0
1 0 0
p = {0.01 0.02 0
RUN mcp (h, a, g, p);

QUIT;
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The SAS System
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0 0 033 057
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COPD example revisited
R: gMCP package

Open source package at http://cran.r-project.org/web/packages/gMCP/

Provide graphical user interface (GUI) within R through JAVA

=loix|

File Example graphs Analysis Extras Help

]ﬂ, @‘ Q\ ’ ad. — || adjacency Matrix
: ; pval — 5
: : : H1 H2 H3 H4
Place new nodes and edges or start the test procedure H4 05 05 0
H2 0.5 0 0.5
H3 0 1 ]
H4 7] 0 0
‘| Hypothesis Weight P-Value
) H1 |1f2 11 | Reject and pass a ‘
| H2 [112 | Jo.02 | | Rejectandpassa |
| H3 o | lo.o7 | | Reject and pass o ‘
H4 |[] | |U_001 | | Reject and pass a ‘
| sum of weights: 1; ‘ Load p-values from R ‘

| Total e 0.025 |

| ® No Information about correlations

..................................... —————— 1| O Selectan R correlation matrix ‘ ‘ | Q
Description rAnaIysis | ;

| © correlation applicable for Simes test (new feature that still needs testing)

74 || » ersphicarisroncnes PRESH VA 20e PR exanple




Summary

75

The graphical approach offers the possibility to

* Tailor advanced multiple test procedures to structured families of
hypotheses reflecting clinical considerations

* Visualize complex decision strategies in an efficient and easily
communicable way, and

» Ensure strong FWER control

The approach covers many common multiple test
procedures as special cases

* Holm, fixed sequence, fallback, ...
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Graphical Approach

Summary

76

Extensions available to address other problems
 Adjusted p-values and simultaneous confidence intervals available
* Power considerations

» Weighted and trimmed Simes tests

» Weighted parametric test procedures to exploit correlation

« Families of hypotheses

» Convex combination of graphs to introduce “memory” (including
truncated procedures)

» Group-sequential and adaptive designs
- Symmetric graphs (including Hochberg procedure)
 Graphical test procedures controlling generalized error rates
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Q&A

Any questions?



Agenda

Break
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Problem Statement

Combine multiplicity adjustment for multiple endpoints,
multiple treatment arms, multiple subpopulations, ...

with

repeated testing in the framework of a group-sequential
design.

aq 1 az(=a —aq) H,® * Py
H,® ¢ ®
b= T—1 -
® ¢ @
; Interim 1 Interim 2 Interim 3 Final

time
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General principle we will follow

80

Top layer:
Design the multiplicity-adjustment method ignoring
repeated testing for the moment

- E.g. the graphical procedure rrs @) 1 (1) 1

@40

Overall population B+ population

Bottom layer:
Devise an alpha-spending approach for the hypotheses
and all a-levels which occur in the closed test procedure.

(Xi, Glimm, Bretz, 2016)
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Short recap of group-sequential testing

Hypothesis H, is tested repeatedly in time at times
I, .., Ir.

H, will be rejected if t; > c; (or alternatively if t; < c;) at at
least one time I;

* t; is observation of test statistic T; (e.g. a t-test statistic or a p-value)
calculated from the data available up to time I;

* ¢; are critical values fulfilling Py (T; = c¢iorTy = ¢ior .. Tp=cp) S @

Repeated testing poses a multiplicity problem, but there is
just one hypothesis, so decision space is much simpler (H,
IS either true or false).
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Short recap of group-sequential testing

82

"Time" in this context refers to information time
* In "conventional" trials: number of patients recruited
* In time-to-event trials: number of events accrued

* In general: information fraction, ratio of variance of parameter
estimate at interim and final

Very common assumption ("canonical distribution"):

. Ty, ..., T are multivariate normal
ii. Ty ~NGL6,1)

111, corr(Tl-,Tj) = JIi/ljfori <j

holds asymptotically under relatively mild assumptions (Scharfstein et
al., 1997; Jennison and Turnbull, 1997), e.g. for ML-estimates.

Graphical Approaches | BBS | March 29, 2022



Short recap of group-sequential testing

Typically, we know 1[4, ..., I in advance
* e.g. we planned IAs after 50, 100 and 200 patients

Or we can condition on their observations

* e.g.we plan |As after 6, 12 and 24 months and condition on the
number of events observed up to then

This knowledge can be used to find the critical values c;
such that Py (Ty = ¢, orTy = ¢y or ... Tp = cp) = a.

As there are infinitely many solutions, additional
restrictions are needed ("alpha-spending rules")

*  Most common are the Pocock and the O'Brien-Fleming Lan-
deMets-alpha-spending approaches, but there are many more.
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Multiplicity + group-sequential

84

Top layer:
Design the multiplicity-adjustment method with a graph

Bottom layer:
Devise an alpha-spending approach for the hypotheses
and all the a-levels which occur in the closed test

procedure defined by the graph.

Whenever a hypothesis H; is rejected (no matter when), it
gives its a to other hypotheses (according to the graphical
procedure)

* For a-propagation, we ignore the group-sequential aspect
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Multiplicity + group-sequential

A simple example: hierarchical testing of PFS and OS

Qv 0
) \H2)  HziOS

Within this setup: Two interim analyses, 1 final

reject reject

|A1 test H1 " test H2 > stop
| not rejected not rejecteq
A2 |test H1 —% . test H2 — <% . stop

¥ not rejected
stop '
final test H2
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Hierarchical testing of PFS and OS

|A1 after 150 PFS events, |A2 after 300 PFS events
Final after 200 OS events

Information fractions
* PFS: 0.5, 1
+ OS: 75, 150, 200/ 200 = 0.375, 0.75, 1 (estimated #OS events at |As)

Alpha-spending: OBF for PFS, Pocock for OS = critical
values for the p-value:

PFS 0.0015 0.0245 0
OS (PFS not sign.) 0 0 0

OS (PFS signifikant) 0.0124 0.0117 0.0100
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Hierarchical testing of PFS and OS

Remarks:

The approach uses the known correlation between stage-
wise test statistics, but not between PFS and OS

* In the hierarchical procedure, corr(PFS, OS) does not play a role.

"Looking back" is allowed

* If H; is not rejected at I1A1, rejected at IA2, H, not rejected at IA2, we
are allowed to "retest" H, at IA1 at the level 0.0124. This preserves
the FWER.

... but does it make sense? (Some debate, see e.g. Tamhane et al., 2021)

If in practice, observed OS events diverge, we recalculate
- e.g. if 65, 160, 200 OS events observed, use 0.0111; 0.0133; 0.0097
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Modification of the example

88

PFS and OS jointly primary

x 'y
2 1 2
H;: PFS
H,: OS
1

Critical values
(OBF-Lan/deMets for PFS, PK-Lan/deMets for OS)

PFS at a/2 0.0004 0.0124 0
PFS at a 0.0015 0.0245 0
OS at a/2 0.0062 0.0056 0.0046

OSata 0.0124 0.0117 0.0100
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Joint testing of PFS and OS

Remarks:

89

Alpha-spending for H;, H,, ... does not have to be the same

Alpha-spending c; ; (a;;) for the different levels «;; arising in
the top-layer multiple test procedure of H; also does not
have to be the same

(k is stage, {a;1, a;,, ... } is set of all levels which can arise for H; in the graph)

* e.g., we could have used Pocock for OS at a/2 and then levels
(0.0062, 0.0056, 0.0198) for OS at «

a

a
C2'1 (E) = 00062, CZ,Z (E) = (0.0056

But we must obey the condition ¢; . (a;;) < ¢;x(a;j,) for all
a;; < a;;, and k (Maurer and Bretz, 2013)

* e.g. mustn't use Pocock for OS at a/2 and then switch to OBF at «
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Several primary endpoints

In group-sequential trials, correlation between stages is known:
. \/n,-/nj between stages /,j with non-T TE-endpoints and equal group sizes
. \/i,-/ij between stages i,j with TTE-endpoints (/; information fraction of stage /)

Occasionally correlation between endpoints is also known:

* In practice usually only if primary endpoints pertain to several doses or
regimens compared with a common control.

H, ® f( o

H, e { ‘\0,' E ap
t 0 i 2 3
O * * O
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Several primary endpoints: endpoint
correlation unknown or not exploited

H, @ —— & —8> |a,
H, @ < ¢ —& [0,
H, @ —0— ¢ —&> (0
t O 1 2 3

@ ¢ | @

Strategy: "Bonferroni on hypotheses”, then GS.

« Some improvements with partial knowledge of correlations
between hypotheses are possible (e.g. Maurer et al., 2011)

« A personal caveat: Don't try GS-splitting on full «, then

"bonferronize" GS-alphas (i.e. reverse top and bottom layer).
 Becomes very complicated very quickly.
* No power gains.
5 Not "wrong", but also not worth the trouble.
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Several primary endpoints: correlation known

Endpoints P, S in 2 stages, normally distributed test statistics:
Any set of critical values (¢,p, Cqs, Cop, Cyg) With

1-® (c1p, C1s, Cop, Cas) = a1,

gives a valid test controlling the multiple level at .

D (C4p, Cqs, Cop, Cyrg) Cdf Of multivariate normal distribution with means O,
variances 1 and the known correlations

- Equally important endpoints: ¢;z=c;s
* ,Pocock-like™: ¢;p= Cyp
* ,O'Brien-Fleming-like™: ¢,p,= ¢,/ \/stage-1-info-fraction

Can be done sequentially:

If one of P stage 1, S stage 1, P stage 2, S stage 2 is significant, cross out
the corresponding endpoint P or S and apply the resulting univariate GS test
to the remaining endpoint at full a (as decribed on previous slides).
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Several primary endpoints: correlation known

In theory, we could walk through the closure defined by the
graph, calculate critical values for each intersection arising in it.

Condition ¢; x (a;;) < ¢;x(ayj,) for all a;; < a;j, , k must be kept
(if small values of the test statistic lead to rejection, otherwise reverse).

In practice, this is complicated, the advantages of the graphical
procedure are partly lost (see Bretz et al., 2011, Xi et al., 2017).

For really complex cases with multiple sources of multiplicity
(e.g. several doses, several endpoints and group-sequential
testing), we usually do not know all correlations.

Further literature on GS + (partly) known correlations: Tamhane
et al., 2021; Anderson et al., 2021.
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Some applications

A more complex example

Matching interim alphas with desired decisions |

Matching interim alphas with desired decisions ||

Some traps to avoid
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Example 1: two endpoints, two doses
Study begin

e Two interim and one final analysis, equally spaced in time
e O'Brien-Fleming-type spending function with o« = 0.025

e Test procedure:
1 1/2

2
primary @1

1/2

secondary w3 s | 1 H_4/
0 0

low dose high dose
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Example 1
First interim analysis (t = 1)

96

observed p-values and critical values (p-value scale),

information fraction

(IF)=1/3
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No rejection

il pia afq(aw;({1,2,3,4}))
1 ] 0.0062 10.00002

2 | 0.017 0.00002

3 | 0.009 0

4| 0.13 0

Critical value H,at %;
OBF split at IF=




Example 1
Second interim analysis (t = 2)

observed p-values and critical values (p-value scale),
information fraction (IF)=2/3

Pi,2 a-ri*":z{cxw[-!:H.E.B,é}})

i
1 0.0002 J
2 0.0035 0.0022 ‘s a
3 | 0.002 0 Critical value H;at ;
- 2
=Y e 0 OBF split at IF=2
initial graph
1
E
T R
primary  (H VHE
1 i
2 2
Y
secondary (Hs H;:‘,

0
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Example 1

Second interim analysis (t = 2)

98

P Lo B = =

Pi,2 a5 (aw;({1,2,3,4}))
0.0035 0.0022
0.002 0
006 0
initial graph
1
1 ] ]
P 2

primary

o] —=
P

secondary (H;
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Example 1
Second interim analysis (t = 2)

i Pi,2 ar5(aw;({1.2,3,4})) o ,(W;i({2,3,4})a)
1 0.0002 0.0022 —
2 0.0035 0.0022 0.004
3 0.002 0 0.0008 e 3a,
. 2
OBF split at IF=§
initial graph H, rejected
1
1 p 1
z 2
primary
1 A
2 2
secondary (H;
0 0
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Example 1

Second interim analysis (t = 2)

Pia  afp(aw({1,2,3,4}))

o7 5(Wi({2,3,4})a)

100

P Lo B = =

W E

) 0035 00022

0.002 0

0.06 0
initial graph

1

bl

1
¥4

P =

primary

Fdf—
P

secondary (H;
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H, rejected

L=

0.004
0.0008
0

%

daf



Example 1
Second interim analysis (t = 2)

i Pi,2 a5(ew;i({1,2,3,4})) o 5(wi({2,3,4})a) a5 (W({3,4})a)
1 0.0002 0.0022 = =
2 0035 0.0022 0.004 — — .
3 0.002 0 0.0008 0.0022 Critical value H; at —;
4 | 006 0 0 0.0022 _ , 2
OBF split at IF=§
initial graph H, rejected Hy ., Ho rejected
1
1 2 1 3
q
primary
1
3 1
1 1 2 |1
2 2 3 | 2
1 ! 1
seconda H H H (!—?'//_
0 0 % z 0 % “H %
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Example 1
Second interim analysis (t = 2)

Pia  afp(aw({1,2,3,4}))

o7 5(Wi({2,3,4})a)

o7, (W;({3,4})a)

102

P Lo B = =

).0035 0.0022
0.002 0
0.06 0

initial graph

1
2

1
¥4

P =

primary

fod|—
Fod| =

secondary (Hs
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0.0008
0

H, rejected

Hy ., Ho rejected

3
)
%
2 | Hl
3 2
1 1
1 1 — 1
1 2 0 7 1 7



Example 1: Decision

Second interim analysis (t = 2)

i Pi,2 a5(aw;({1,2,3,4})) o ,(Wi({2,3,4})a) o 5(Wi({3.4})a) o5 (Wi({4})x)
1 1.0002 0.0022 — — —
2 1 .0035 0.0022 0.004 — -
3 0.002 0 0.0008 00022 -
4 0.06 0 0 0.0022 [ 0.006 ]
Critical value H,at «;
OBF split at IF==
initial graph H, rejected Hy ., Ho rejected Hq, Ha, H5 rejected
1
1 2 1 3
2 2 1
primary '
%
1 1 [ 1y
2 2 3 2
| \Q/ 1
secondary (H; 1 Hy ( @
0 0 vy z 0 3 Ty % 1
Decision to stop the trial
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Example 2: matching interim alphas

Background:

2 jointly primary endpoints with hypotheses H, and H,; H,
tested twice (IAand F), H, only at F.

Subsequent secondary endpoints, all just tested once at F

Study continues irrespective of result of |IA (due to long-
term safety data collection and immature data for key
secondary objectives)

Conditional approval might be granted based on very
convincing IA results.
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Example 2: graph from the protocol

Interim analysis

Final analysis

*

©

=@
: 9 |
€

| 35 \Lzrs |

HE,,/

H, initially tested at level %

H, initially tested at level 4'?“

If H, rejected, H, tested at a
If H, rejected, H, tested at a

How do we best split % and «
onto IA and F ?

*Note that H1 is only tested at the final analysis (at alphar adjusted to account for H1 being tested and
not rejected at the IA) in case of non-rejection at the |IA and rejection of Ha.
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Example 2: graph from the protocol

How do we best split % and « onto IA and F ?

|A after 250 patients, F after 430 patients.

%will be completely used up at IA.
= No re-testing of H, if H, cannot be rejected.

If H, rejected at F, H; will get 4 - % This will go entirely to
the final analysis of H;.

GS-levels for Hy,a = 2.5%: (0.005,0) for% (if H, not rejected)
(0.005,0.023) for « (if H, rejected)
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Example 2: R code

library(mvtnorm)

alpha<-0.025 # Set overall 1-sided alpha for hypothesis testing
nlA<-250 # Planned sample size at the Interim Analysis (lA: stage 1)
nFin<-430 # Planned sample size at the Final analysis (FA: stage 2)
IF<-nlA/nFin # Information Fraction at the IA
corr<-(1-sqrt(IF))*diag(2)+sqrt(IF) #correlation matrix

# To adjust for multiplicity in the group-sequential test of H1 alone, alpha for the test
# of H1 is split to (alpha/5, alphaF) for the IA and Final Analysis respectively.

# calculate critical value for alpha spent at stage 1

c1_a<-gnorm(1-alpha/5) # alpha/5=1-sided alpha allocated at the 1A

# Spending function to calculate the adjusted critical value x for stage 2,
# given alpha=overall alpha and cO is the critical value of stage 1.
adjCrit<-function(alpha1, alpha, c0, corr){

x<-gnorm(1-alpha1)

check<-pmvnorm(upper=c(c0,x),corr=corr, algorithm=Miwa)

return(1-check-alpha)

}

c2starp_a<-uniroot(adjCrit, lower = alpha/5, upper = alpha, alpha=alpha, c0=c1_a, corr=corr, tol=1E-12)

# adjusted alpha (on the % scale) for group sequential test of H3: UPCR at Final Analysis
# with alpha/5=0.5% spent at IA.

adjustedAlphaF<-round(c2starp_a$root*100,1)

adjustedAlphaF

107 Graphical Approaches | BBS | March 29, 2022



Example 2: Why split like this?

GS-levels for Hy, a = 2.5%:
(0.005,0)  for %(if H, not rejected)
(0.005,0.023) for « (if H, rejected)

« This way, we avoid "having to look back": GS-spending at
IA uses exactly the same value forall a;; of H; atj = I, F.
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Example 3: matching interim alphas

Jointly primary endpoints: PFS and OS

H, @ & a;, PFS
H, @ ® ® ® a OS
o * * O
IA 1 A 2 A3 F
(final for H1)
Graph:
0.4a 1 0.6a
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Example 3: matching interim alphas

PFS: O'Brien-Fleming

OS:
» spending at 1.5%: O'Brien-Fleming

« spending at 2.5%: For 1st interim, same as 1.5% OBF, for 2nd and
3rd interim same as 2.5% OBF, for the final all that's left.

Numerical example:
Information fractions of OS: 0.35, 0.5, 0.77, 1
Critical values for OS (Z-scale):

OBF at 1.5% 3.949 3.254 2.550 2.218
at 2.5% 3.949 2973 2.321 2.019
OBF at 2.5% 3.613 2.973 2.321 2.020

110 Graphical Approaches | BBS | March 29, 2022



Example 3: matching interim alphas

Same motivation as in example 2: Matching the critical
values avoids having to "look back" at previous interim
analyses for alpha-adjustment.

We could distribute the saving from IA1 in other ways.

In this example, hardly any difference between
conventional OBF at 2.5% and the modification.

- Reason: OBF spends "next to nothing" at an interim analysis with
0.35 information fraction: pnorm(-3.613)=0.00015

* Hence, there is next to nothing to redistribute.

R code:

modOBF _last.R
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Example 4: traps to avoid

« 3-arm study with an interim and a final analysis

» Hierarchical testing (A vs C, then B vs C)

112

Test OS
(arm A vsarm C)
[Interim Analvss)

Test OS
(Am B vs Arm C)
[Interim Analysis)

Continue follow up until

final analys:s.
Test OS
(arm A vs arm C)

No further testing will be
conducted. Although the
analyses will be updated with
data from a later data cut-off.
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Test OS
(Am B vs Arm C)
(Final Analyss]

Not significant

No further testing




Example 4: traps to avoid

Looks very straightforward.
v 0

% 1 i : :
(Hy) -(H2) Hi:AvsC H,:BvsC

OBF for interim and final, both H; and H,

When protocol is almost finished, clinical team decides to
bring in a futility stop for H;.

|dea: If H, is stopped for futility (and hence "not tested"),
we can test H, at level a.

That's obviously (?) not true.

* The trial statistician caught this, but was uncertain, so reached out to
confirm.
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Example 4: traps to avoid

Q 0
M T : :
(H1) -(H2) Hi:AvsC H,:BvsC

« Assume we spend (0,a) at | and F for both H; and H,.

* Then the futility stop is just like deciding at the interim
whether to test H; and H,.

« That's an adaptive design with endpoint selection.

|t is easy to calculate the inflation in this case analytically.
» Inflation decreases with increasing correlation between

between test statistics.
* R code for calculation of the inflation:

alphainflationprimswitch.R
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Agenda

Break
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Background: FWER and two-study paradigm

Regulatory guidance mandates strong FWER control at a
pre-specified significance level a for

- FDA (2017), EMA (2017)

“Requirement” for two positive confirmatory studies
« FDA (1998) guidance
* many examples of diseases under the two-study paradigm

Single study approvals generally limited to “mortality or
irreversible morbidity” settings
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Background: Pooled analysis to address resource
imbalance

Different sample sizes are needed to achieve a certain
power (e.g., 80%) for different endpoints

* A short-term symptom endpoint (E;, e.g., FEV1)

* A long-term outcome endpoint with low frequency/prevalence (E,,
e.g., COPD exacerbation)

- E, may require a sample size twice as large as E;

These unbalanced requirements of resources in a single
study are amplified under the two-study paradigm

One solution is to for E,
without doubling the sample size of each study
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Problem statement

Pooling data from two studies increases statistical
efficiency

Different ways to pool
- Naive pooling
- Meta-analytic approach using ‘study’ as a stratification factor

Poolability needs careful examination to avoid systematic
bias/difference

What approaches could be considered for managing multiplicity
when data on an endpoint from two or more trials were planned
to be pooled, and each trial had multiple endpoints managed?

Lavange (2019)
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Principles
Bretz and Xi (2019)

at (one-sided) level a = 0.025 within
each of the two confirmatory studies

from at least
one other endpoint prior to the pooled analysis

Control of the across
both studies at an appropriate level

* Probability to make a false claim of success for an endpoint while
taking into account that a significant result on the same endpoint has
to be obtained in both studies
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Three roles of the pooled analysis

Two endpoints
* E, requires twice the sample size of E; to satisfy a reasonable power

Two-study paradigm

* Independent and identically designed

* H; and H; for E; are tested independently in Study 1 and 2, respectively
* H, and H, for E, are tested independently in Study 1 and 2, respectively

Pooled analysis for E,

- H, is tested using data from both studies

Role of the pooled analysis
» Secondary

* Primary

» Co-primary
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Pooled analysis as a secondary analysis

Two endpoints (E;: primary and E,: secondary)

= Without the pooled analysis

— Hierarchical test within each study Study 1 Study 2
— Study 1: test H, at level « = 0.025 ey T o = 0.025

» If rejected, test H, at level « = 0.025
— Study 2: test H; at level a = 0.025 @

* If rejected, test H, at level @ = 0.025 .

= Summary

1
— FWER for E; and E, < 0.025 @ @

— SWER for E; and E, < 0.025%
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Pooled analysis as a secondary analysis

Two endpoints (E;: primary and E,: secondary)

= With the pooled analysis
— Study 1: test H; at level a = 0.025
— Study 2: test H; at level a« = 0.025

— If  H, is
tested using data from both studies
at level « = 0.025

= Summary
— FWER for E; < 0.025
— SWER for E; < 0.025%
— Independent substantiation via E;

— Level a = 0.025 for H, is determined
by the conventional level of proof for
a single hypothesis
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Study 1

a = 0.025

o}

Study 2

a = 0.025

jo

/

S

Pooled analysis
ata = 0.025if
both H; and H;
are rejected




Pooled analysis as an additional secondary analysis
Bretz, Maurer, and Xi (2019)

Three endpoints (E;: primary and = Summary
E,, E3: secondary) — FWER within each study, i.e., for E; and

With the pooled analysis E;, is controlled at level a = 0.025
- Hierarchical test within each study for E; — SWER for E; < 0.025%
and E; T :
, - — Type | error rate for secondary endpoints,
* If both Hy and H; are rejected, H, is tested i.e., for E, and Es, is controlled at level
using data from jboth studies at level ¢ — a? o 0 0225 3
- Bonferroni split between Hs, H} and f, a=v
Study 1 Study 2
a = 0.025 a = 0.025
() H Pooled analysis at

H./I\

a — a? = 0.024375

if both H; and H;
are rejected
1 \
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Pooled analysis as a primary analysis

Two endpoints (Eq, E,: primary)

Without the pooled analysis

« For example, Bonferroni test within each study
» Study 1: test H; and H, at level a/2 = 0.0125
» Study 2: test H; and H, atlevel a/2 = 0.0125

Summary
- FWER for E; and E, < 0.025
- SWER for E; and E, < 2 - 0.01252 < 0.0252

Study 1 Study 2

a/2=00125 «/2=0.0125 a/2=00125 a/2=0.0125

QIO = @
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Pooled analysis as a primary analysis

Two endpoints (E;, E, primary)

With the pooled analysis

 Study 1: test H; atlevel a/2 =
0.0125

- Study 2: test H; atlevel a/2 =
0.0125

- Test H, atlevel a? — (a/2)? =
0.00046875 (Bonferroni split
between H,, H; and H,)

= Summary

— FWER for E; < 0.0125
— SWER for E; and E, < 0.0252

If only H, is significant,
independent substantiation may
be questioned since either Hy or
H] is not significant

Study 1 Study 2 Pooled analysis
a/2 = 0.0125 a/2 = 0.0125 az.ao(o%?;;

(=)

(=)

()
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Pooled analysis as a co-primary analysis

Two endpoints (E;, E,: co-primary)

Without the pooled analysis

- Study 1: test H, and H, each at level a = 0.025

* Study 2: test H; and H, each at level « = 0.025

- Claim study success only if both hypotheses are rejected

Summary
- FWER for E; and E, < 0.025
- SWER for E; and E, < 0.025%
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Pooled analysis as a co-primary analysis

Two endpoints (Eq, E,: co-primary)

With the pooled analysis
 Study 1: test H, at level @ = 0.025
- Study 2: test H; atlevel a = 0.025

- Test H, at level « = 0.025
- Determined by the conventional level of proof for a single hypothesis

Summary

- FWER for E; < 0.025

- SWER for E; < 0.025% and for E, < 0.025
* Independent substantiation via E;

- Significance level for H, could be determined to be T[az,a], in order
Eo_ Ialance the level of replication standard and the feasibility of the
rials
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ASCLEPIOS | and Il — Design
Hauser et al. (2020)

128

Two confirmatory studies of identical design in patients with multiple
sclerosis to compare ofatumumab versus teriflunomide

Primary endpoint was the annualized relapse rate (ARR)

Key secondary endpoints:

- disability worsening after 3 months, disability worsening after 6 months,
disability improvement after 6 months

* number of Gd lesions, number of new or enlarging T2 lesions, neurofilament
light (NfL) chain, brain volume loss

Randomizing 900 patients per study would provide > 90% power in
each study to detect a 40% lower ARR

Combining the data from both studies, a total of 1800 patients would
provide 90% power and 80% power to detect a 38.6% lower risk of
disability worsening at 3 months and at 6 months, respectively
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ASCLEPIOS | and Il — Testing scheme

Hauser et al. (2020)
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ASCLEPIOS | and Il — Results
Hauser et al. (2020)

130

Overall, 946 patients
were assigned to
receive ofatumumab
and 936 to receive
terifflunomide

All confidence intervals
and p-values in the
study report were
presented without
adjustments
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More examples

Multiple doses and multiple endpoints

300 gq4w

300 g2w
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Combined analysis

7’




More examples
Two birds, one stone

File a single dossier for Ind.2

two related indications Ind 1in Ind 2
(‘Ind 2" and ‘Ind 1 in Ind Ind 1

2’) based on two sets of
endpoints from the two
confirmatory studies

-
* The two confirmatory studies i
used ‘Ind 2’ in their testing 5
strategy i

1

* The project level testing
strategy incorporated the
endpoint relevant for ‘Ind 1 in
Ind 2’
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Conclusions and other considerations

133

Several test strategies are proposed, based on a few key
principles and depending on the role on the pooled analysis

Pooled analysis would be done in a timely manner if both
studies are finished simultaneously

Reduce the dependency of individual trial reports on the pooled
analysis for logistic efficiency

* Not recommend to include the pooled analysis into the study testing
strategy, see Bretz, Maurer, and Xi (2019) for a case study

Pooled analysis relies on independent substantiation

- Efficiency of the pooled analysis may be outweighed by the risk of
inconsistency (e.g., two studies of different designs/populations)

- Maca, Gallo, Branson, and Maurer (2002) discuss a consistency
requirement for testing the pooled analysis
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Q&A

Any questions?
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