Implementation of the Treatment Policy Strategy for Continuous Longitudinal Endpoints: A Comparison of Estimation Methods

Thomas Drury – GSK

Estimation Workstream Estimands Implementation Working Group (EIWG)

08th December 2022

EIWG

- Talk is by **Estimation Workstream** of the **EIWG**
 - James Bell (Elderbrook Solutions)
 - Amel Besseghir (Clinchoice)
 - Christian Bressen Pipper (LEO Pharma)
 - Thomas Drury (GSK)
 - Lorenzo Guizzaro (EMA)

- Tobias Muetze (Novartis)
- Khadija Rantell (MHRA)
- Marcel Wolbers (Roche)
- David Wright (AstraZeneca)

Disclaimer: The talk reflects the collective opinions of the members of the workstream and are not necessarily the views of our respective organisations

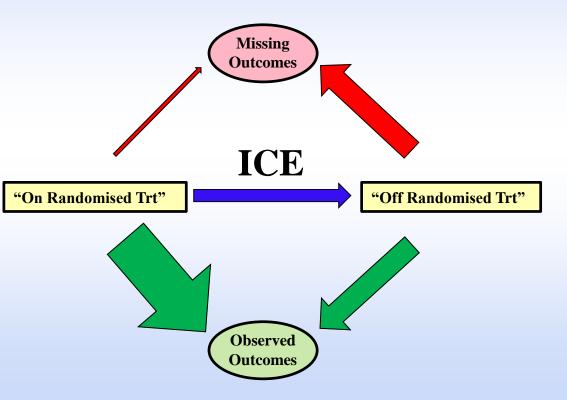
- Acknowledgements:
 - Ian White (UCL) prior collaboration with GSK looking at multiple imputation models.
 - James Roger (LSHTM) discussions about estimation of univariate vs. multivariate models.

Treatment-policy includes intercurrent events (ICEs) within the treatment effect of interest

- i.e. treatment changes (e.g. treatment discontinuation, use of rescue therapy) are part of the treatment regimens being compared.
- Its estimation requires continued data collection regardless of ICE occurrence
 - Nonetheless, missing data is almost inevitable
- Estimation of treatment policy in the presence of missing data is difficult
 - Treatment status within arms is heterogeneous (unlike other strategies)
 - ICEs highly correlated with subsequent missingness

Missing Data

- Missing data in clinical trials is disproportionately "off randomised treatment" (off-trt)
- Observed patients are 'different' to unobserved patients
 → Complex missing data problem
- Conditioning on patients' trt state to solve missingness issues is necessary (but not sufficient) for unbiased estimation



Aims

- Aims for simulation study:
 - Evaluate estimation methods for treatment policy handling in continuous outcome data
 - Use as realistic simulation as possible
 - Key criteria: bias and variability
 - Quantify impact of increasing missingness on estimation methods
 - How much missingness is too much?
 - When do methods 'break'?
 - Investigate whether (restricted) maximum likelihood estimation (MLE) can be used
 - Investigate whether Jump-to-Reference is useful for treatment policy estimation
 - Compare both to Multiple Imputation methods suggested by previous researchers.

Approach	MI Model	MLE Model	Implied Clinical Assumption
Standard	MI1	MMRM1	No distinction between on- and off- treatment
Retrieved dropout ('time independent')	MI2	MMRM2	Immediate off-treatment effects
Retrieved dropout ('time dependent')	MI3	MMRM3	Time-dependent off-treatment effects
Jump-to-reference	J2R	-	Off-treatment assumed to be reference arm effect

- Focus on retrieved dropout (RD) methods
- All models target same estimand: treatment policy for all ICEs

Estimation Methods

Approach	MI Estimation	MLE Estimation
Standard ('1 models')	 No off-rand-trt indicators Standard (sequential regression) MI 	 No off-rand-trt indicators Standard MMRM
Retrieved dropout ('time independent', '2 models')	 Binary off-rand-trt indicators Residual-based MI 	 Binary off-rand-trt indicators off-trt*trt*visit interaction MMRM Combine on-, off- rand-trt estimates Apply binomial variance correction
Retrieved dropout ('time dependent', 3' models)	 Ordinal off-rand-trt patterning Standard MI with pattern covariates 	 Ordinal off-rand-trt patterning pattern*trt*visit interaction MMRM Combine on-, off-trt estimates Apply multinomial variance correction
Jump-to-reference	 Binary off-trt indicators Residual-based MI Use control group as reference set 	N/A

- For simulations where models '2' and '3' did not fit, a fixed step-down procedure was used:
 - '3' → 'minimally merged patterns $3' \rightarrow 2' \rightarrow 1'$
- All estimation methods implemented in SAS, primarily using standard procedures (MIXED, MI, BGLIMM)

Motivation: PIONEER 1

1724

•

PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes Diabetes Care Volume 42, September 2019

OBJECTIVE

This trial compared the efficacy and safety of the first oral glucagon-like peptide 1 (GLP-1) receptor agonist, oral semaglutide, as monotherapy with placebo in patients with type 2 diabetes managed by diet and exercise alone. Two estimands addressed two efficacy-related questions: a treatment policy estimand (regardless of trial product discontinuation or rescue medication use) and a trial product estimand (on trial product without rescue medication use) in all randomized patients.

RESEARCH DESIGN AND METHODS

This was a 26-week, phase 3a, randomized, double-blind, placebo-controlled, parallel-group trial conducted in 93 sites in nine countries. Adults with type 2 diabetes insufficiently controlled with diet and exercise were randomized (1:1:1:1) to once-daily oral semaglutide 3 mg, 7 mg, 14 mg, or placebo. The primary end point was change from baseline to week 26 in HbA_{1c}. The confirmatory secondary end point was change from baseline to week 26 in body weight.

PIONEER 1 Model

- Simulate longitudinal HbA1c through a multivariate normal distribution
 - Baseline and five post-baseline visits
- 400 patients randomized 1:1 between treatment and control

- Model parameters chosen to emulate PIONEER 1 trial
 - On-treatment means and off-treatment means
 - Variances
 - Intercurrent event rate
 - Visit schedule

PIONEER 1 Model

- Single intercurrent event
 - Emulating discontinuation of randomized treatment and simultaneous use of rescue medication
 - Intercurrent event occurrence conditional on prior outcomes & baseline
- Two scenarios for post-discontinuation behavior
 - Immediate change in HbA1c
 - Linear change in HbA1c
- Missing data can only occur after the intercurrent event
 - Conditional only upon discontinuation (and # visits since)
 - Monotone, with no intermediate missingness

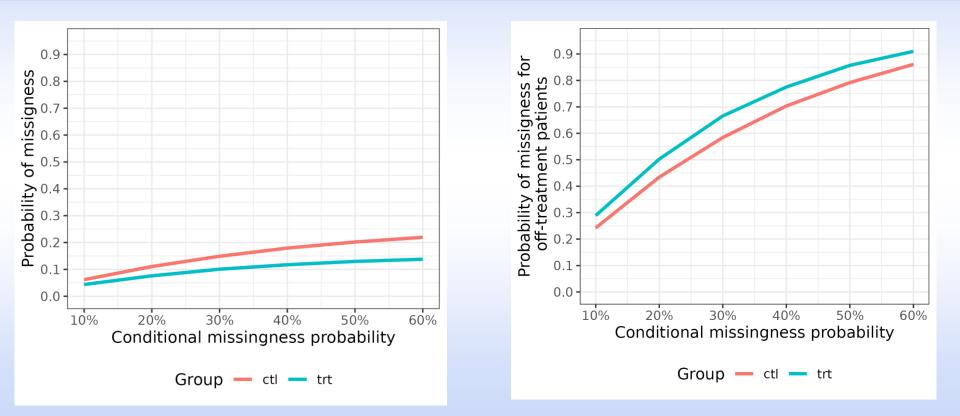
Simulation Study

- For each setting, 1000 trials are simulated
- Here: focus on results for estimate $\hat{\theta}$ of mean difference between treatment and control at final visit
- Operating characteristics of interest:

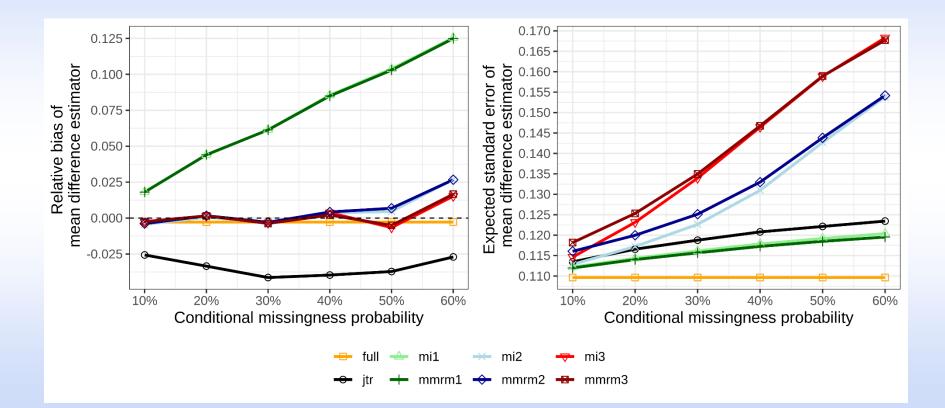
- **Relative bias**:
$$RelBias(\hat{\theta}, \theta) = \frac{E[\hat{\theta}] - \theta}{\theta}$$

- **Expected standard error**: $E[se(\hat{\theta})]$
- Varying Parameter: Probability of missing values at study visit *i*, conditional on having discontinued the randomized treatment and not having missing value prior to visit *i*

Treatment Policy Estimation Probability of Missingness



Treatment Policy Estimation Bias & Variance: Immediate Change



Treatment Policy Estimation Bias & Variance: Linear Change



Recommendations

- MI and MLE methods appear relatively interchangeable; pick the approach you prefer
 - MLE logistical advantages? MI variance advantages?
- Always have step-down / back-up approaches pre-specified for RD methods
 - Simpler RD methods and/or reference based approaches
- MMRM1/MI1 methods are not appropriate; heavily biased unless minimal missing data
- Use the simplest RD model appropriate for your trial to minimise variance inflation
 - For straightforward fast-off symptomatic treatments, MMRM2/MI2 are sufficient
 - More complex off-treatment effects need MMRM3/MI3 (but awkward, high variance)
- Sensitivity analysis is essential: careful trade-offs between assumptions and statistical properties
- **Time-dependent covariates not problematic here** as MMRM2/3 sum effects across them

Conclusions

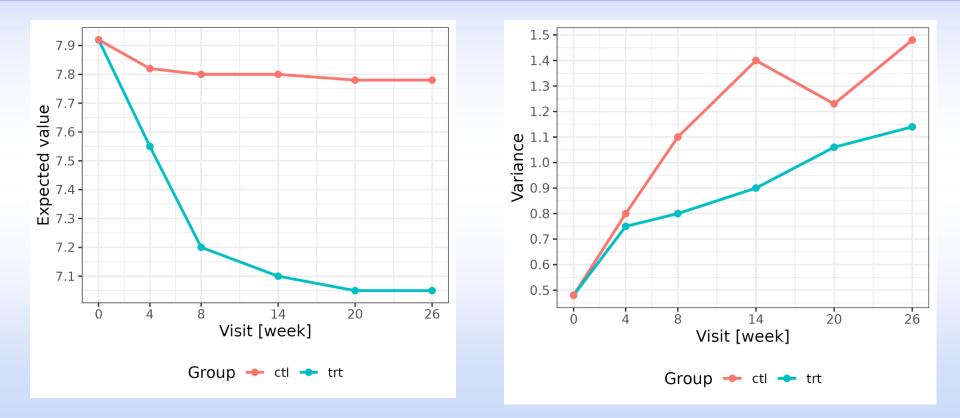
- Treatment policy estimands are difficult to unbiasedly estimate
- MLE can replicate MI RD methods using off-trt TDC interactions with treatment
- Simple, off-trt behaviour with low missingness \rightarrow 'MMRM2'/'MI2' RD
- Complex off-trt behaviour with low missingness \rightarrow 'MMRM3'/'MI3' RD
- Reference-based approaches probably best bias/variance trade-off when high missingness
- Set up trial conduct procedures to collect as much post-ICE data as possible
 - Statistical methods work best with 50% + retrieval and start breaking down below 40%

Thank you for your attention!

Limitations

- Generally realistic trial data simulated, but:
 - Based on summary, not patient level, data
 - Single intercurrent event type, combining discontinuation and rescue
 - 'Average effect' modelled on real data
 - Simulated missingness is MCAR conditional on discontinuation
 - Does not extend to MAR, but most methods fail this easier test
 - Other than missingness amount and discontinuation mechanism, only one 'scenario'
 - Expect generalisability of results, but cannot prove it
- Not simulated type I error yet
 - Not expected to be an issue if global null hypothesis is identical trajectories

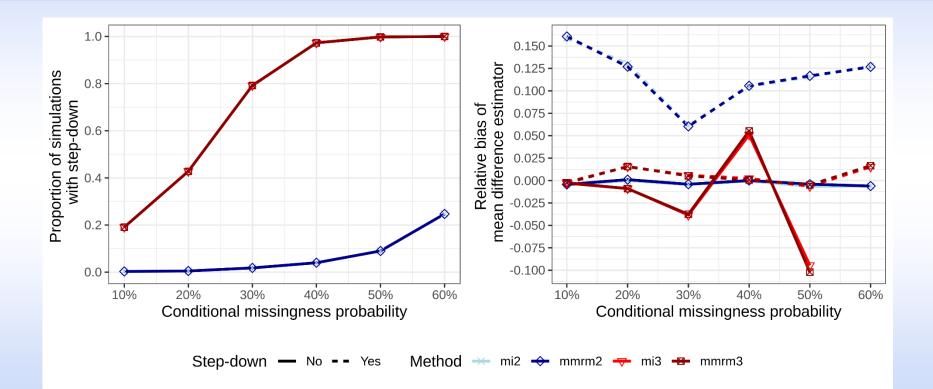
Mean and Variance under Randomized Treatment



Post Intercurrent Event Behavior

- Immediate change in HbA1c
 - For control group: drop of HbA1c by 0.6
 - For treatment group: drop of HbA1c by 0.2
 - Note that this represents an *improvement* upon going off-trt (high use of rescue therapy)
- Linear change in HbA1c
 - Let x be the number of visits since intercurrent event
 - For control group: decrease of HbA1c by $min(x, 3) \cdot 0.8$
 - For treatment group: decrease of HbA1c by $min(x, 3) \cdot 0.25$

Treatment Policy Estimation Step-down & Bias: Immediate Change



Treatment Policy Estimation Step-down & Bias: Linear Change

