

g-estimation for the hypothetical strategy with an application to Alzheimer's Disease and COVID-19-related intercurrent events

BBS & EFSPI virtual event

Presented by Dr. Florian Lasch on 15 December 2022

Meet the Speaker

Dr. Florian Lasch

Data Analytics and Methods Task Force

Organisation: EMA

Biostatistics Specialist providing scientific support to development and evaluation throughout all stages of marketing authorisation assessments of medicinal products submitted to the EMA

Leading the Raw Data Pilot execution

Disclaimer

The views expressed in this presentation and in the following panel discussion are the personal opinion of the author and should not be understood as being made on behalf of or reflecting the position of the EMA or one of its committees or working parties.

- 1. Implementation of ICH E9(R1) by the regulatory network
- 2. g-estimation for the hypothetical strategy
 - In Alzheimer's Disease
 - For Covid-19 related Intercurrent Events
- 3. General learnings

Clinical evidence 2030: vision

- Evidence generation is planned and guided by data, knowledge and expertise
- Research question drives evidence choice: embraces spectrum of data and methods
- Clinical trials remain core but are bigger, better and faster
- Real world evidence is enabled and value is established
- The patient voice guides every step of the way
- Healthcare systems are supported in their choices
- High levels of transparency underpin societal trust

"At the core of a successful MA dossier is excellent clinical evidence"

ACT EU is an initiative to **transform the EU clinical research environment** in support of medical innovation and better patient outcomes.

- **Builds on the momentum** of the Clinical Trials Regulation and CTIS
- **Driven by** the Network Strategy to 2025 and the EU Pharmaceutical Strategy
- Launched 13 January 2022
- Read the <u>press release</u> and <u>paper</u>
- Read the multiannual workplan

EUROPEAN MEDICINES AGENCY

ACT EU MULTI-ANNUAL WORKPLAN 2022-2026

		Initial clinical trial applications must be submitted under CTR							All trials regulated under CTR							
	2022		2023				2024				2025				2026	
Priority action	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
PA 1: Mapping & governance		Ma Develop RA	Apping of N RACI mat	letwork CT rix for exter for core gov	activities nded Netwo vernance g	ork groups						1				
PA 2: Implementation of CTR	• Mon	thly KPIs tr	acking CTR oritise & re Scheme	implement solve spon to support	tation sor issues large mult	tinational CT	La or	aunch one-s n academic	top shop fo support	or informatio	n					
PA 3: Multi-stakeholder	Con	cept paper	for	or sponsors	Kick-	off multi-sta	keholder	platform								
platform	plat	form	ler I		e Eve	nts run unde	er the mu	lti-stakehol	der umbrell	la						
PA 4: Good Clinical Practice modernisation	worksho	lulti-stakeh o on ICH E6	older ● GCP		Impl	ement chang Commu	ges in EU unications	guidance d and chang	ocuments e managem	nent strategy	,	1				
PA 5: Clinical trials data analytics	EU clini data a	cal trials malytics strategy	Develo	• Wo	orkshop to i al trials das	identify topic shboard	cs of com	mon interes	t			1				
PA 6: Targeted communication campaign	Laund news Con	th clinical tr letter	ials 1 campaign	Ded	licated web	site for ACT	EU	Enhanced w multi-stake	vebsite linki holder platf	ing to form		0				
PA 7: Scientific advice	Enha intra infor exch	ance i-network mation iange	Deve	Sur lop a conso	rvey stakel blidated scie	holders 🔴 entific advice	Operate 1 e process	L st pilot pha	se 🔶	Assess Phan	maceutical	Strategy Op	erate expa pilot p	nded 🔵 🖝	optimico & e consolidateo	xpand
PA 8: Methodologies		De Co De	ecentralise omplex clin ecentralise	d clinical tria ical trials Q d clinical tria	als worksh &A worksh als recomn	op endation pa	Publication Supp aper	n of method port to guide	ology guida eline develo	ance roadma	p 🔴 ICH	E9 (R1) E	stimands fu	lly impleme	nted)
PA 9: Clinical trial safety	 Laur prog 	nch the men ramme & a SA	ntorship ssessors' t FE CT KPI	raining Review IT fu s identified	 Proo Net unctionalitie 	cess establis work safety es for safety	hed for coordinati	ion arly IT revie	Saf cur	ety assessor riculum defir	s' ned • Yea	rly IT revie	w		• Year	y IT review
PA 10: Training curriculum	Traini strate	ng 🌒 🔵 Fra 9y	amework c Train aunch mod	ontracts for ing gap ana lules in Clin	r training c alysis iical Trials,	ontent	Dialogue o Compilat e, Pharma	on training r ion of modu accepidemic	needs with a ules for diffe plogy & Bios	academia & erent target statistics	SMEs audiences					
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
	2022		2023	3			202	4			202	5			2020	5

ACT EU multi-annual Workplan 2022-2026

Example 1

Symptomatic treatment in trials for Alzheimer's Disease*

*: Lasch et al. (2022): <u>A Simulation Study on the Estimation of the Effect in the Hypothetical Scenario of No Use of</u> <u>Symptomatic Treatment in Trials for Disease-Modifying Agents for Alzheimer's Disease</u>

Estimand

- Population: Patients with prodromal AD
- <u>Treatment</u>: Disease modifying treatment vs Placebo
- Endpoint: Change in CDR-SB (24 months baseline)
- Summary measure: Difference in mean change in CDR-SB between treatment arms

Intercurrent event: Initiation of symptomatic treatment

EMA Guideline on Clinical investigation of medicines for the treatment of Alzheimer's disease (2018):

"Patients can be expected to initiate new medication or to modify the dose of concomitant symptomatic treatments, with or without discontinuing assigned treatment. The impact of those medication changes complicates the evaluation of the effect of the test product compared to placebo or active control. Therefore, providing that reliable methods of estimation can be identified, an appropriate target of estimation could be based on a **hypothetical scenario** in which the new concomitant medication or modifications in the dose of concomitant medications had not been introduced."

\rightarrow What is a reliable method of estimation?

Common practice:

(i) set values after the initiation of symptomatic treatment as missing

(ii) apply missing data approaches using mixed models for repeated measures, Inverse probability weighting, etc.

Observation

- Sym is a mediator of the effect of Z on Y_2
- The Estimand of interest is the controlled direct effect of Z on Y_2 controlling Sym at Sym = 0:

 $E[Y_2(Z = 1, Sym = 0)] - E[Y_2(Z = 0, Sym = 0)]$

- de-mediation approaches like g-estimation can be applied for the estimation

EUROPEAN MEDICINES AGENCY

Z: randomized treatment

Sym: Initiation of symptomatic treatment

Y_t: observed CDR-SB at time t

EUROPEAN MEDICINES AGENCY

G-estimation*

- 1. Estimate the effect of the mediator Sym on Y_2 Predict the probability of Sym: $P(Sym = 1) \sim Y_1 + Y_0 + Z$ Estimate the effect of Sym: $Y_2 \sim Z + Y_0 + Y_1 + p_{sym} + Sym$
- 2. De-mediate the effect of Sym from Y_2

 $R_2 = Y_2 - Sym * \beta_{sym}$

3. Estimate the effect of Z on the de-mediated values

 $R_2 \sim Z + Y_0$

*: Loh et al.: Estimation of Controlled Direct Effects in Longitudinal Mediation Analyses with Latent Variables in Randomized Studies

Objectives:

- Quantify the performance of commonly used estimators (bias, T1E / power)
- Compare the performance to de-mediation via g-estimation

Data generating mechanism

Disease progression model: beta regression model with Richard's logistic link function g

 $\frac{Y_{t,i}^*}{18} \sim \beta(a,b), \quad g(x) = \left(\frac{x^\beta}{1-x^\beta}\right)^{\frac{1}{\beta}}$ für $\tilde{t} > t$: $g(\overline{Y_{\tilde{t},i}^*}) = g(Y_{t,i}^*) + \alpha_i * \frac{\tilde{t}-t}{52} * (E_{DM})^{treat_i} * (E_C)^{confound_i}$

α_i : random decline rate

EUROPEAN MEDICINES AGENCY

			sqrMSE	CI length (SE [*]) [*]	empirical type-I-error				
Estimator	Bias (SE [*])	Coverage (SE*)	(MSE (SE*))		(95% CI*)				
reference estimator –	-0.001 (0.003)	95.3 (0.952)	0.269 (0.113 (0.002))	1.329 (0.001)	0.022 (0.019, 0.025)				
linear model using Y_2^*									
Observed Value	-0.001 (0.003)	95.18 (0.951)	0.261 (0.106 (0.002))	1.287 (0.001)	0.022 (0.019, 0.025)				
Mixed Effects Model with observed values	-0.001 (0.004)	94.68 (0.945)	0.298 (0.138 (0.002))	1.461 (0.001)	0.026 (0.023, 0.03)				
Observed Values - adjusted	0 (0.003)	95.14 (0.95)	0.247 (0.095 (0.001))	1.218 (0.001)	0.023 (0.02, 0.026)				
Loh's g-estimation, model-based SE	-0.001 (0.003)	95.19 (0.951)	0.268 (0.113 (0.002))	1.325 (0.001)	0.022 (0.019, 0.025)				
Loh's g-estimation,	-0.001 (0.003)	95.21 (0.951)	0.268 (0.113 (0.002))	1.322 (0.001)	0.022 (0.019, 0.025)				
Bootstrap based SE									
Linear Sequential g-Estimation	-0.001 (0.003)	95.06 (0.949)	0.266 (0.111 (0.002))	1.308 (0.001)	0.023 (0.02, 0.026)				
Predictive Mean Matching (PMM)	0 (0.003)	95.64 (0.955)	0.248 (0.097 (0.001))	1.271 (0.001)	0.02 (0.017, 0.023)				
PMM worsening adjustment 0.5	0 (0.003)	95.65 (0.956)	0.256 (0.103 (0.001))	1.308 (0.001)	0.02 (0.017, 0.023)				
PMM worsening adjustment 2	0 (0.004)	95.73 (0.956)	0.286 (0.129 (0.002))	1.453 (0.001)	0.02 (0.018, 0.023)				
PMM worsening adjustment 3	-0.001 (0.004)	95.66 (0.956)	0.311 (0.152 (0.002))	1.573 (0.001)	0.02 (0.017, 0.023)				
Inverse Probability WeightingWeighting	0 (0.005)	93.74 (0.935)	0.397 (0.253 (0.004))	1.882 (0.005)	0.032 (0.029, 0.035)				
doubly robust Inverse Probability Weighting	-0.001 (0.004)	94.77 (0.946)	0.287 (0.129 (0.002))	1.39 (0.001)	0.026 (0.023, 0.029)				
Mixed Effects Model	0 (0.004)	94.75 (0.946)	0.297 (0.139 (0.002))	1.462 (0.001)	0.028 (0.024, 0.031)				
*: Monte Carlo estimates of the standard errors, Performance parameter are rounded to three digits.									

Simulation results – Alternative hypothesis

			sqrMSE	CI length (SE [*]) [*]	empirical power				
Estimator	Bias (SE [*])	Coverage (SE*)	(MSE (SE*))		(95% CI*)				
reference estimator –	0.004 (0.003)	94.61 (0.945)	0.235 (0.088 (0.001))	1.167 (0.001)	0.896 (0.89, 0.902)				
linear model using Y_2^*									
Observed Value	0.035 (0.003)	94.24 (0.941)	0.229 (0.084 (0.001))	1.13 (0.001)	0.895 (0.889, 0.901)				
Mixed Effects Model with observed	0.037 (0.003)	94.79 (0.946)	0.261 (0.108 (0.002))	1.281 (0.001)	0.804 (0.796, 0.812)				
values									
Observed Values - adjusted	0.122 (0.003)	92.73 (0.924)	0.24 (0.091 (0.001))	1.088 (0.001)	0.855 (0.848, 0.862)				
Loh's g-estimation, model-based SE	0.007 (0.003)	94.45 (0.943)	0.235 (0.088 (0.001))	1.163 (0.001)	0.897 (0.891, 0.903)				
Loh's g-estimation,	0.007 (0.003)	94.38 (0.942)	0.235 (0.088 (0.001))	1.162 (0.001)	0.893 (0.887, 0.899)				
Bootstrap based SE									
Linear Sequential g-Estimation	0.014 (0.003)	94.27 (0.941)	0.233 (0.087 (0.001))	1.148 (0.001)	0.897 (0.891, 0.903)				
Predictive Mean Matching (PMM)	0.152 (0.003)	90.41 (0.899)	0.264 (0.107 (0.001))	1.121 (0.001)	0.8 (0.793, 0.808)				
PMM worsening adjustment 0.5	0.127 (0.003)	91.85 (0.915)	0.26 (0.105 (0.001))	1.154 (0.001)	0.805 (0.797, 0.813)				
PMM worsening adjustment 2	0.051 (0.003)	94.12 (0.939)	0.266 (0.112 (0.002))	1.288 (0.001)	0.783 (0.775, 0.791)				
PMM worsening adjustment 3	0 (0.004)	94.57 (0.944)	0.285 (0.129 (0.002))	1.402 (0.001)	0.756 (0.748, 0.765)				
Inverse Probability	0.118 (0.004)	91.57 (0.912)	0.332 (0.175 (0.003))	1.532 (0.004)	0.593 (0.583 <i>,</i> 0.603)				
WeightingWeighting									
doubly robust Inverse Probability	0.028 (0.003)	94.06 (0.939)	0.252 (0.101 (0.001))	1.217 (0.001)	0.855 (0.848, 0.862)				
Weighting									
Mixed Effects Model	0.107 (0.003)	93.08 (0.928)	0.275 (0.119 (0.002))	1.27 (0.001)	0.746 (0.738, 0.755)				
*: Monte Carlo estimates of the standard errors, Performance parameter are rounded to three digits.									

- For estimating the controlled direct effect:
 - Using the <u>observed values</u> leads to a small bias proportional to the imbalance in patients starting symptomatic medication between the treatment arms, and underestimation of the variability
 - (= estimating the total effect of Z on Y_2)
 - <u>Adjusting</u> for *Sym* leads to bias

(= conditioning on the descendent of Y_1 results in conditioning on the collider Y_1 , which opens another path from Z to Y_2 , and blocks the path $Z \rightarrow decline \rightarrow Y_1 \rightarrow Y_2$)

- Setting observations post-IE to missing and using <u>missing data</u> <u>approaches</u> leads to bias and loss of power

(Donor sparseness for patients with high values for Y_1 & violation of the linearity assumption leads to underestimation of the decline)

- **Best performing method** is Loh's <u>g-estimation</u>* showing no bias and minimal loss of power

*: Loh et al.: Estimation of Controlled Direct Effects in Longitudinal Mediation Analyses with Latent Variables in Randomized Studies

15 g-estimation for the hypothetical strategy - Dr. Florian Lasch, EFSPI & BBS webinar 2022

EUROPEAN MEDICINES AGENCY

Example 2

Covid-19 related intercurrent events*

*: Lasch & Guizzaro (2022): Estimators for handling COVID-19-related intercurrent events with a hypothetical strategy

Estimand

- Population: adult patients with chronic tic disorders
- <u>Treatment</u>: treatment with Nabiximols vs placebo
- <u>Endpoint</u>: relative change in the Total Tic Score (TTS) of the Yale Global Tic Severity Scale (YGTSS) 13 weeks after treatment initiation as compared to baseline
- <u>Summary measure</u>: Mean difference in relative change between treatment arms

Intercurrent events:

- Implementation of social distancing measures
- Change in measurement technique from in-person to remote
- → A **hypothetical strategy** is of interest for both of these IEs

Z: randomized treatment

Covid: occurrence of Covid-19 related IE

 $Y_t : observed \ YGTSS-TTS \ at time \ t$

Covid-19 impact – causal structure

Observation

- The Estimand of interest is the controlled direct effect of Z on Y_1 controlling *Covid* at *Covid* = 0:

 $E[Y_1(Z = 1, Covid = 0)] - E[Y_1(Z = 0, Covid = 0)]$

- Covid is <u>not</u> a mediator of the effect of Z on Y_1
- de-mediation approaches are not needed. Could they still be useful?
- Commonly used approaches:

(i) set values after the initiation of symptomatic treatment as missing

(ii) apply missing data approaches (MI, IPW, PMM, complete case analysis)

Covid-19 impact – causal structure

G-estimation

1. Estimate the effect of *Covid* on Y_1

Predict the probability of *Covid*: $P(Covid = 1) \sim Y_0 + Z$

Estimate the effect of *Covid*

- a) Additive: $Y_1 \sim Z + Y_0 + p_{covid} + Covid$
- b) Multiplicative: $log(Y_1) \sim Z + Y_0 + p_{covid} + Covid$
- c) Adaptive: either a) or b) depending on the R^2 of the respective models
- 2. De-mediate the effect of *Covid* from Y_1

a)
$$R_1 = Y_1 - Covid * \beta_{covid}$$

b) $R_1 = \exp(\log(Y_1) - Covid * \beta_{covid})$

c) either a) or b) depending on the $R^2 \mbox{ of the respective models}$

3. Estimate the effect of Z on the de-mediated values

 $R_1 \sim Z + Y_0$

EUROPEAN MEDICINES AGENCY

Covid-19 impact - simulation study

Objectives:

 Quantify the performance of commonly used estimators (bias, T1E / power) depending on the proportions of patients with an IE

Data generating mechanism

 $Y_0 \sim N(25, 6.5) \Big|_{[14, 50]}$

 $change_{underlying}|_{Z=1} \sim N(-0.234, 0.12)$ and $change_{underlying}|_{Z=0} \sim N(-0.122, 0.12)$

Impact of Covid:

- a) Additive $Y_1 = (Y_0 + Y_0 * change_{underlying}) + C * C_{effect}$ with $C_{effect} \sim N(2, 1)$
- b) Multiplicative $Y_1 = (Y_0 + Y_0 * change_{underlying}) * C_{effect} ^C$ with $C_{effect} \sim N(1.5, 0.1)$

 $change_{obs} = \frac{Y_1 - Y_0}{Y_0}$

Null hypothesis

- No bias for the investigated estimators
- No type I error rate inflation
 - Exception: IPW for large proportions of affected patients (\geq 70%).

EUROPEAN MEDICINES AGENCY

Simulation results – alternative hypothesis - bias

FIGURE 5 Bias of the candidate estimators for the continuous estimand under the alternative hypothesis, multiplicative IE impact q-estimation for the hypothetical strategy - Dr. Florian Lasch, EFSPI & BBS webinar 2022

Simulation results – alternative hypothesis - power

FIGURE 7 Power of the candidate estimators for the continuous estimand under the alternative hypothesis, multiplicative IE impact

Learnings

- The biasedness of estimators depends on the causal structure and the (true data generating mechanism (including of the occurrence / effect of IEs)
- At least in some scenarios, the affected values carry valuable information that can be used for estimation
- g-estimation is suitable for IEs that are mediators, but also works if the IE is independent from other study variables (other than the outcome)
- For data collection: It is important to capture values after the occurrence of IEs, even if a hypothetical strategy is used

Next questions

- Is g-estimation always better than missing data techniques?
- How to best quantify the relative amount of information in the affected values?
- How can scenarios with high / low relative information be predicted / distinguished in practice?

Any questions?

Official address Domenico Scarlattilaan 6 • 1083 HS Amsterdam • The Netherlands Telephone +31 (0)88 781 6000 Send us a question Go to www.ema.europa.eu/contact

Back-up slides

Results – Null hypothesis

FIGURE 5 Bias of the candidate estimators for the continuous estimand under the alternative hypothesis, multiplicative IE impact g-estimation for the hypothetical strategy - Dr. Florian Lasch, EFSPI & BBS webinar 2022

Results – Null hypothesis

FIGURE 3 Type I error of the candidate estimators for the continuous estimand, multiplicative IE impact

Results – Alternative hypothesis - bias

Figure S7. Bias of the candidate estimators for the continuous estimand under the alternative hypothesis, additive IE impact.

Results – Alternative hypothesis - power

Figure S9. Power of the candidate estimators for the continuous estimand under the alternative hypothesis, **additive IE impact**.