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Need accurate estimates of
P(AE) + comparison between arms.

IP and (1 - KM) biased irrespective
of what we use them for.

Bias "does not cancel out” when
comparing P(AE) between arms in RCT.

No need to force competing risks into
ICH E9(R1) addendum framework.
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Let me explain.
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Agenda

0 Take home messages
o Estimation of P(AE)

@ The SAVVY project

. . . Resources and future plans
@ Bias of common estimators of AE risk
@ Bias of common estimators of relative AE risk e Backup

a Competing risks and the estimand addendum

° Take home messages
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Assume you want to assess whether a
new drug prolongs OS in an RCT
with staggered recruitment.
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Clinicians proposal: cut data at
four years and compare proportions of
those who died.
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What would you say?
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Estimation of P(AE)
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Estimation of P(AE)

Arm A: control

@ 2-arm RCT.

@ 10 patients per arm.

o =Ll a0l l-LLL

@ All patients randomized on same
day.
T T T T T T
0 1 2 3 4 5 .
@ All patients observed for 6 months.
time since first patient randomized
Arm B: treatment
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Estimation of P(AE)

Arm A: control

@ 10 patients per arm.

]
: @ 2-arm RCT.
1
1
1

All patients randomized on same

day.

All patients observed for 6 months.
time since first patient randomized

Arm B: treatment
P(AE in A) =3 /10 = 0.30,
P(AE in B) = 4 / 10 = 0.40.

time since first patient randomized
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Estimation of P(AE): staggered entry

Arm A: control

2-arm RCT.

@ 10 patients per arm.

-
_— @ Patients enter the trial over time.

1
2) i ; 3‘ J. ; é @ All patients observed until cutoff.

time since first patient randomized

Arm B: treatment P(AE in A) =1 / 10 = 010’
P(AE in B) = 3 / 10 = 0.30.

Is this what we want?

Staggered entry / censoring only

time since first patient randomized
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What do these proportions estimate?

Incidence proportion in experimental arm in interval from 0 to t:

I (t) Number of patients with AE in [0, t] and that this AE is observed
E .
3

iPg(t) estimates:

P(AE happens in [0, t] and that this AE is observed before censoring).

iPE(t) < P(AE happens in [0, t]) = IPg(t) underestimates absolute AE risk.
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With censoring it is unclear
which quantity /Pg is estimating.
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Simple incidence proportion is biased
if we have unequal follow-up or censoring.
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Estimate P(AE) using time-to-AE
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Consider time-to-first-AE

Redefine question: Consider time-to-first-AE.
@ Estimate P(AE happens in [0, t]) using 1 - Kaplan-Meier.
@ Correctly accounts for censoring.

@ Consistently estimates AE risk at t, accounting for varying follow-up.
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Estimation of P(AE)

Arm A: control

0 2 3 4 6
time since first patient randomized
Arm B: treatment
)
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Estimation of P(AE): staggered entry

Arm A: control

0 1 2 3 4 6
time since first patient randomized
Arm B: treatment

)

)
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B |

time since first patient randomized
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time since first patient randomized

Arm B: treatment

time since first patient randomized
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Competing events

(= competing risk)
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Estimation of P(AE)

Arm A: control

0 2 3 4 6
time since first patient randomized
Arm B: treatment
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Estimation of P(AE): competing event of death

Arm A: control

0 2 3 4
time since first patient randomized
Arm B: treatment
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Estimation of P(AE): competing event of death

Arm A: control

0 2 3 4 6
time since first patient randomized
Arm B: treatment
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0.8

0.4

0.2

Arm A: control

—— 1 - Kaplan-Meier (deaths would not happen)
= = 1-Kaplan-Meier (deaths censored) —> biased!

time since first patient randomized

Arm B: treatment

-—-—

time since first patient randomized
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What does (1 - RI\\/I) with censoring of CEs estimate?

Administrative censoring: patients may still experience event at later time point.
Not for CEs!

What does (1 - m) with censoring of CEs estimate?
@ Violates independent censoring assumption:

@ Patient censored at death will NEVER experience AE.

@ Patients who will never experience AE treated as if they could still have one.
@ Less than 100% of patients experience AE before death:

@ Some die before AE = P(AE) < 1.

@ But (1- W) approaches 1 => naive (1 - W) overestimates P(AE).
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Abandon!

Although tutorial articles are available, too many studies are susceptible to
competing risk bias which can be avoided by using adequate statistical
methodology. There is no excuse not to use it, and Kaplan-Meier method-
ology should be completely abandoned in the analysis of end points with

competing risks in all journals.

Schumacher et al. (2016)
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1 - Kaplan-Meier is biased
if we have competing events.
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Is this relevant at all?

How large can the bias be?
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The SAVVY project
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The SAVVY project

Survival analysis for AdVerse events with VarYing follow-up times:

Goal: improve analyses of AE data in clinical trials through use of survival techniques
appropriately dealing with

@ varying follow-up times,
@ censoring,

@ competing events.

SAVVY webpage
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9 pharma + 3 universities
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The SAVVY project

Federated learning: central analysis team:
@ Developed macros (R + SAS). Validated R package under development.
@ Every sponsor ran them on their data.
@ Only share aggregated data.

@ Central team performed meta-analysis.

Data from 17 RCTs in various indications.
200 - 7171 patients.

186 AEs: selected by sponsor.
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The SAVVY project

Estimate P(AE) at latest available follow-up with various estimators:
@ Estimate P(AE) in one arm (the experimental).

@ Estimate relative risk in RCTs using risk and hazard ratio.

CEs in SAVVY:
@ Hard: Death - AE after death impossible.

@ Soft: lost to follow-up, withdrawal of consent, treatment discontinuation = AE

of interest can in principle still occur but is not observed due to end of follow-up.

Interest in estimation of P(AE), not in P(specific CE) = lump all CEs together, not
interested in cumulative incidence of CE.
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Goal: compare bias of estimators.

What is "gold standard”?
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Gold standard: Aalen-Johansen estimator

SAVVY: Empirical bias evaluation within RCTs.

What is "best” estimator to benchmark against?

Estimator Accounts for Accounts for
censoring CEs

Incidence proportion No Yes

1 - Kaplan-Meier Yes No

Aalen-Johansen estimator Yes Yes

All nonparametric: no constant hazard assumption.

Aalen-Johansen:

@ Generalizes Kaplan-Meier to competing risk and general multistate models.
@ No censoring: Aalen-Johansen = incidence proportion.
@ No competing events: Aalen-Johansen = (1 - Kaplan-Meier).
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Bias of common estimators of AE risk
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Estimation of AE risk: incidence proportion

Experimental arm. 5.0 —

Evaluated at maximal observed follow-up time 7.

@
Incidence proportion: K
2]

| -

@ Accounts for CEs but not censoring. g 20

~ w
@ Point in boxplot: corresponds to ratio of IPg(7) to <
gold standard for given AE. g
N ®

@ Ratio = 1: IPg(7) gives same AE risk estimate as gold £ 101
standard. ;
2
@ Underestimation of P(AE) up to factor THREE! 8

0.5

Overall performance not too bad. Why?

Datasets have many soft CEs = little censoring.

H
;

P 1-KM
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Estimation of AE risk: 1 - Kaplan-Meier

Experimental arm.

Evaluated at maximal observed follow-up time 7.

2.0 i

1 - Kaplan-Meier:
@ Accounts for censoring but not CEs.

@ Point in boxplot: corresponds to ratio of (1 - W)E(T)

ratio of estimator to AJE (log-scale)

1.0 | eom— - —— -
to gold standard for given AE. E
o
@ Ratio = 1: (1 - KM)g(7) gives same AE risk estimate g
as gold standard. °
0.5
@ Overestimation of P(AE) up to factor FIVE!
o
\ T
P 1-KM
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Bias of common estimators of relative AE risk
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Estimation of relative AE risk: incidence proportion

Evaluated at minimum of maximal observed follow-up 7.

Incidence proportion:

@ Point in boxplot: corresponds to ratio of /P(7) to gold
standard for given AE and treatment arm.

@ Ratio = 1: [P(r) gives same AE risk estimate as gold
standard.

@ Underestimation of P(AE) compared to gold standard.
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Estimation of relative AE risk: incidence proportion

Evaluated at minimum of maximal observed follow-up 7.

Incidence proportion:

@ Point in boxplot: corresponds to ratio of
IPe(7)/IP¢(7) to gold standard for given relative AE
risk.

@ Ratio = 1: [Pg(7)/IP¢(r) gives same relative AE risk
estimate as gold standard.

@ Over- and underestimation observed.

@ Overestimation of RR up to factor of almost 3.
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Estimation of relative AE risk: (1 - KM)

Evaluated at minimum of maximal observed follow-up 7.

1 - Kaplan-Meier:

@ Point in boxplot: corresponds to ratio of (1 - R/\\/’)(T)
to gold standard for given AE and treatment arm.

@ Ratio = 1: (1 - RI\\J)(T) gives same AE risk estimate
as gold standard.

@ Overestimation of P(AE) compared to gold standard.
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Estimation of relative AE risk: (1 - KM)

Evaluated at minimum of maximal observed follow-up 7.

1 - Kaplan-Meier:

@ Point in boxplot: corresponds to ratio of (1 - m)E(T)

/(1- m)c(‘l') to gold standard for given AE.
@ Ratio = 1: (1- KM)g(7) / (1 - KM)c(r) gives same
relative AE risk estimate as gold standard.

]
1.0-——i——

il

:

@ Over- and underestimation observed.
0.2 -
@ Underestimation of RR up to factor of >4.

ratio of (1 — KM) in experimental to AJE / ratio of (1 — KM) in control to AJE

0.1
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Arm-wise bias does not cancel out
in relative comparisons.
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Now we have seen what does not work.
But what does work?

Aalen-Johansen: properly accounts for
varying follow-up times and
competing risks.
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Before you ask...

Kaspar Rufibach Stop the abuse! Estimation of P(AE) #46



Before you ask...

Focus on bias - what about variability?
@ Focus today with IP rarely on variability either!

@ Simulation study for 2-arm comparisons: Stegherr et al. (2021c).

We do not collect data necessary to estimate P(AE) with AJE?

@ ICH E9(R1) estimands addendum: clinical trial objective dictates data collection

and analytical method!
@ Clarify clinical trial objective also for analysis of safety!

@ Proper definition of CE requires understanding and discussion of therapeutic

area.
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Before you ask...

Does normalization by exposure time not solve the problem?
@ Incidence density. See backup for details.
@ A priori estimates AE hazard, not P(AE). Can be turned into estimator of P(AE).
@ Assumes exponentiality of AE hazard.

@ Incidence density for each CE.

Can we use IP for "signal detection” or other purposes?

Biases = statistical properties of IP, (1 - KM).

Independent of what we use estimates of P(AE) for!
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But wait...
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Kaspar Rufibach

What about causality?

Stop the abuse!

Estimation of P(AE)



Rima’s question

Aalen-Johansen:
@ Estimates cumulative incidence function.

@ Censoring: if random, e.g. administrative censoring = does not destroy causal

interpretation.

@ Competing events: intervention on observation process differs from intervention
affecting the patient. Young et al. (2020), Rufibach et al. (2022).
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Competing risks and the estimand addendum
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One event — time to AE

[ 0: free of AE | [ 1: event of interest: AE |

ao1(t)
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Add competing event

1: event of interest: AE

%
M

0: free of AE

2: competing event
e.g. death
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Competing event vs. intercurrent event

Definition competing event, Gooley et al. (1999):
We shall define a competing risk as an event whose occurrence either pre-

cludes the occurrence of another event under examination or fundamentally
alters the probability of occurrence of this other event.

Definition intercurrent event, ICH (2019):

Events occurring after treatment initiation that affect either the interpretation
or the existence of the measurements associated with the clinical question of
interest.

Intercurrent event definition &~ competing event definition.
ICH (2019) does not say anything about competing risks though.

Death: competing risk + intercurrent event (?).
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Kaspar Rufibach

Extending Table 1 in Varadhan et al. (2010).

Clinical questions of interest and their estimators

whatever happens earlier?

("composite”)

Clinical question Target of Estimator Comment

inference
What is hazard / Event-free Kaplan-Meier 1tol correspondence
probability of AE or death, survival between hazard and

probability.

die?

What is hazard / Cause- Nelson-Aalen - Key measure to compare
probability of AE, specific groups in RCT.
accounting for the hazards - Evaluate impact of risk
possibility that patients factors.
may die before Cumulative Aalen- - Interest in absolute risk
experiencing an AE? incidence Johansen ("probability”).
- Benefit-risk of an
intervention.
What is hazard / Survival 1 - KM with - Rarely (to say the least)
probability of AE in world function censoring of clinical interest.
where patients would not ("hypothetical”)| deaths - Maybe for other CEs.

- Estimation: assumption
about "independence” of
competing events - neither
sensible nor needed!

Stop the abuse!
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Did we get our clinical questions answered?
Yes!

Did we need ICH E9(R1)
language or strategies?

No!
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Conclusions:
Clearly formulate clinical question.

None of the five strategies in the
addendum needed to model competing risk.
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Random variable vs. stochastic process formulation
Endpoints like OS: model using random variable X with CDF F, hazard h, etc.

Competing risk, multistate models:
@ Avoid random variables: temptation of latent failure time models (backup).
@ Use stochastic process formulation, see e.g. Beyersmann et al. (2012):

@ X(t) € {0,1,2},t > 0: state occupied by individual at time t > 0.
@ X(t) = if event j has occurred in [0, t].

@ T :=inf{t : X; # 0}, X7 = state occupied at T.

@ Competing risk data: (T, X7).

Andersen et al. (1985):
In life history analysis, time and random phenomena occurring in time play an
essential role, and it seems therefore more natural to study life history analysis
in terms of the theory of stochastic processes. Thus, the formulation in
terms of random variables may have contributed to hampering the researchers
working in the field of survival analysis, or failure time analysis, from extending

their otherwise fine methodology to more general life history models.
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Marry competing risk with ICH E9(R1) if you must

Definition of variable in ICH E9(R1) addendum:

The variable (or endpoint) to be obtained for each patient that is required to
address the clinical question.

No one says this must be univariate!

Marry competing risk with ICH E9(R1) if you must:

Attribute Definition

Treatment generic

Population generic

Variable (T, Xr)

Intercurrent event(s) None left from competing risk, maybe others.

Summary measure Depends on clinical question: hazard ratio, cumulative
incidence.

Alternative proposal for general estimands for MSMs: Biihler et al. (2022).
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Take home messages
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Need accurate estimates of
P(AE) + comparison between arms.

IP and (1 - KM) biased irrespective
of what we use them for.

Bias "does not cancel out” when
comparing P(AE) between arms in RCT.

No need to force competing risks into
ICH E9(R1) addendum framework.
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Resources and future plans
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Resources

SAVVY webpage:
@ Exemplary code for all methods.
@ All papers and talks.
@ Papers:

o SAP: Stegherr et al. (2021a).

o Methods: Stegherr et al. (2021c).
o l-sample: Stegherr et al. (2021b).
e 2-sample: Rufibach et al. (2022).

@ Effective statistician podcasts:

o About SAVVY: https://theeffectivestatistician.com/
the-analysis-of-adverse-events-done-right-savvy/.

e 200th episode with 10% most downloaded podcasts:
https://theeffectivestatistician.com/200th-episode/.

Slides will be posted on BBS webpage.
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www.bbsbasel.ch

Future plans

Estimate disease-specific P(AE)’s, properly discussing therapeutic area specific CEs.

Influence updating of guidelines.
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Thank you for your attention.

kaspar.rufibach@roche.com
http://www.kasparrufibach.ch

¥ numbersman77
© numbersman77
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Treatment works
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Estimation of P(AE)

Arm A: control

2-arm RCT.

10 patients per arm.

. ) @ All patients randomized on same
time since first patient randomized
day.

Arm B: treatment

@ All patients observed for 6 months.

P(AE in B) = 4 / 10 = 0.40.

1
]
: P(AE in A) = 3 / 10 = 0.30,
1

time since first patient randomized
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Estimation of P(AE): treatment works

Arm A: control

@ 2-arm RCT.
@ 10 patients per arm.
T T T T T T
0 1 2 3 4 5 @ All patients randomized on same
time since first patient randomized day

Arm B: treatment

@ Hazard ratio for PFS = 0.5, stop
AE recording after PFS event.

P(AE in A) =1 / 10 = 0.10,
P(AE in B) = 4 / 10 = 0.40.

'
1
r T T T T T 1
0 1 2 3 4 5 6

time since first patient randomized
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Estimation of P(AE): treatment works + staggered entry

Arm A: control

1
1
1
1
|
1
: @ 2-arm RCT.
1
1
1
1
6

@ 10 patients per arm.
; i Y . @ Patients enter trial over time.

time since first patient randomized

@ All patients observed until cutoff.
Arm B: treatment

@ Hazard ratio for PFS = 0.5, stop

AE recording after PFS event.

P(AE in A) =1 / 10 = 0.10,
— P(AE in B) = 4 / 10 = 0.40.

time since first patient randomized
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Competing risk models: population quantities

"Cause-specific survival function™

Sk(t) = exp[Aoj(t)].

@ S is NOT marginal survival function!

@ Only has this interpretation if competing event time distributions and censoring

distribution are independent.

@ Then marginal distribution describes event time distribution in world where

competing events do not occur.
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Competing risk models: hazard vs. probability

Transition probabilities in general multistate models:

Pj(s,t) = P(X(t) =j|X(s) =1, Past).

Competing risk:

@ Py;(0,t) referred to as cumulative incidence.

@ Expected proportion of patients experiencing event of type j over course of time.

Cumulative incidence for j = 1,2:
P(T§ t, X1 :J) = ng(O,t)
P(X(t) =j|X(0) = 0)

= /Ot P(T > v—)agj(v)dv

= /O-t exp<7A01(vf) - Aoz(vf))aoj(v)dv.
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Competing risk models: population quantities

How is competing risk data generated? Two-step simulation process:
@ Determine time T at which event occurs via all-cause hazard «(t).
@ Event type Xt for given time T: determined via multinomial experiment that
decides with probability a;(T)/a(T) on X7 = .

Beyersmann et al. (2012), Allignol et al. (2011).

Hazards completely determine stochastic behaviour of competing risks process.
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Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 4.2.3 (2023-03-15 ucrt)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: ggplot2 / etm / cmprsk / mvna / prodlim / survival / reporttools / xtable

This document was generated on 2023-04-06 at 12:28:47.
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