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Federated Learning has been in our daily lives since 2018
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Federated Learning has been in our daily lives since 2019
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Federated Learning has been in our daily lives since 2020
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Federated Learning enables similar benefits of centralized 
analytics, but without sharing or transferring data
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Federated Learning (FL)
A machine learning approach where a model is trained across 
multiple decentralized devices or servers holding local data 
samples, without exchanging them.

Centralized analytics
An approach where AI model is trained on a central server using 
data collected and stored centrally from various sources, resulting 
in direct access and visibility of the data.
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Underlying concepts of federated approach drive the 
adoption
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Different types of Federated Learning focuses on diverse set 
of applications – data strategies
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Horizontal Federated Learning is 
utilized when different entities 
possess data samples of the same 
features but from different 
individuals. It enables model training 
across these datasets without 
centralizing the data, thus preserving 
privacy.

Vertical Federated Learning involves 
training models on datasets that 
share the same data samples but 
have different features. It's suitable 
when different entities possess 
different sets of features for the 
same individuals without directly 
sharing the sensitive data.

Federated Transfer Learning
is the practice of applying 
knowledge gained while solving one 
problem to a different but related 
problem. It involves training a model 
on one task and utilizing the learned 
features or fine-tuning the model for 
a different task, thereby saving 
computational resources and time.
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Simple example of horizontal Federated Learning usage in 
SaMD development 
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Creating an ML tool which is 
assessing the cardiovascular 
disease (CVD) risk for two patients, 
Bob and Alice, using their age and 
cholesterol level respectively, 
without sharing this sensitive data 
directly.

 Bob's age and cholesterol level data resides 
at DB 1.

 Alice’s age and cholesterol level data resides 
at DB 2.
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Simple example of vertical Federated Learning usage in 
SaMD development 
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Creating an ML tool which is 
assessing the cardiovascular 
disease (CVD) risk for a patient, 
Bob, using his age and cholesterol 
level respectively, without sharing 
this sensitive data directly.

 Bob's age data resides at DB 1.
 Bob's cholesterol level data resides at DB 2.
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Simple example of Federated transfer Learning usage in 
SaMD development 
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Creating an ML tool which is 
assessing the diabetes melitus
disease risk for patients, e.g. Bob, 
which has been developed based 
on an ML tool which is assessing 
the CVD risk of other patients, e.g. 
Alice, using their age and 
cholesterol level in both cases.

 Bob's age and cholesterol level data resides 
at DB 1.

 Alice’s age and cholesterol level data resides 
at DB 2.



11Accenture Life Sciences | Digital Health

The art of possible with Federated Learning – Privacy
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The art of possible with Federated Learning – Cost efficiency 
& agile value case implementations 
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The art of possible with Federated Learning – Responsible AI 
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Transparency & Accountability - Metadata –
vs. actual data – exchanged ensuring 
traceability and auditability
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Opportunities empowered by Federated Learning

Imp. statusUse cases that can benefit from FL

Clinical trial patient selection and recruitment

Adverse event prediction and surveillance

Healthcare outcome research

Clinical outcome analysis & healthcare resource allocation

Drug interaction analysis

Genomic data analysis

Personalized treatment plans

Drug discovery

Medical image analysis

Conceptual Academic Research Industrial Deployment

Many of these use cases can also be pursued using traditional centralized machine learning (AI) methods. However, FL offers unique advantages 
that can address specific challenges and unlock opportunities that traditional AI may struggle with.

Non-Exhaustive
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Opportunities enabled by Federated Learning Non-Exhaustive

Collaborative Research without Centralization: Life Science companies can engage in collaborative research 
on complex questions without the need to centralize or share sensitive data.

Competitive Advantage Preservation: Life Sciences companies can form partnerships and consortia while 
safeguarding their competitive edge.

Bridging the Interdisciplinary Gap: Federated Learning facilitates the exchange of knowledge between 
medical researchers and data scientists, bridging the gap between AI and clinical practice.

Diverse Research Exploration: Thanks to the adaptable nature of federated learning frameworks, 
collaborations can span various research domains, fostering innovative solutions more rapidly than 
conventional machine learning methods.

Compliance and Infrastructure Adaptation for Global Collaboration: FL can conform to region-specific 
privacy regulations, provide essential IT infrastructure, standardize code-sharing practices, and establish 
equitable compensation models for participating partners.
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Scientific and technical challenges in Federated Learning

Algorithmic & model challenges
 Optimization challenges: developing algorithms to tackle communication constraints and non-convex loss 

landscapes.
 Non-IID data robustness: designing algorithms that remain robust amidst non-IID data distributions.
 Fairness and bias: mitigating bias arising from uneven data distribution.

Technical & infrastructural challenges
 Infrastructure variability: adapting to diverse device setups and node configurations.
 Data standardization: harmonizing data formats to enable cohesive training.
 Scalability: managing a large number of nodes and large models efficiently.

Privacy, security & evaluation challenges
 Privacy-Preserving technologies: balancing privacy preservation, training efficiency, and model accuracy.
 Evaluation metrics: establishing metrics to comprehensively assess performance, privacy, and other 

crucial aspects.
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Depending on the challenge at hand, the various prominent 
solutions can be an ideal or less optimal fit
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Challenges / Frameworks

Algorithmic & Model Challenges

Optimization Challenges

Non-IID Data Robustness

Fairness and Bias

Technical & Infrastructural Challenges

Infrastructure Variability

Data Standardization

Scalability

Privacy, Security & Evaluation Challenges

Privacy-Preserving Technologies

Evaluation Metrics

FLAIRMSR FLUTE FL

Fair Good Excellent
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Case Studies of Federated Learning
Over the last five years, we have witnessed an acceleration in the pace of creation of new public and private initiatives, 
showing the general need and trend for collaboration with Federated Learning
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AI4BH: A federated learning initiative aimed at improving cardiovascular health 
by enabling multiple healthcare providers to collaboratively enhance AI-driven 
diagnostic and prognostic models for heart disease.

FeTS: A project that employs federated learning to enable different institutions to collaboratively 
develop brain tumor segmentation models from MRI scans without centralizing patient data.

MELLODDY: A collaborative project that applies federated learning to 
allow multiple pharmaceutical companies to work together on drug 
discovery without sharing sensitive chemical data.

2018
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