

Systematic reviews of animal studies as avenue to reproducible and translatable preclinical research

PD Benjamin Victor Ineichen, MD, PhD University of Zurich Center for Reproducible Science Benjamin.Ineichen@uzh.ch

Vision: Foster the development of therapies to treat human diseases (<u>Translation</u>).

Methods: Evidence synthesis and data science.

Impact: Benefit welfare of experimental animals and contribute to better treatments for patients.

https://stride-lab.pages.uzh.ch/website/

1959: Russel and Burch's 3Rs

Harm-benefit analysis

Primary research

What are systematic reviews?

- A research summary that addresses a focused question in a <u>structured</u> and <u>reproducible</u> manner.
- Purpose: uncovering problems in preclinical research, informing best practice guidelines, reducing research waste, guiding translational research, and enhancing reproducibility.

01	DEFINE A SPECIFIC RESEARCH QUESTION	06	SCREEN FULL TEXTS FOR RELEVANCE
02	DEFINE YOUR TEAM	07	EXTRACT DATA FROM STUDIES
03	CONDUCT A LITERATURE SEARCH	80	ASSESS THE RISK OF BIAS
04	WRITE AND REGISTER A PROTOCOL	09	DRAW CONCLUSIONS FROM YOUR DATA
05	SCREEN ABSTRACTS FOR RELEVANCE	10	MAKE YOUR SR PUBLICLY AVAILABLE

Assessing the predictive translational power of animal models in multiple sclerosis drug development: A systematic review and meta-analysis

Ingrid Berg

Failed multiple sclerosis drugs

Goal: systematically compare animal experiments of approved versus failed multiple sclerosis drugs

Ingrid Berg

Assessing the predictive translational power of animal models in multiple sclerosis drug development: A systematic review and meta-analysis

Ingrid Berg

Assessing the predictive translational power of animal models in multiple sclerosis drug development: A systematic review and meta-analysis

90% of animal experiments have been conducted...

- ...AFTER first-in-human trial
- ...AFTER regulatory approval

Julia Bugajska

PROSPERO
International prospective register of systematic reviews

Julia Bugajska

Bugajska et al, *submitted*, 2024

Julia Bugajska

Julia Bugajska

10.7 months (might vary for individual cases!)

Data deluge in biomedicine as barrier for reproducibility

Ineichen et al, 2023

Automation of systematic reviews?

01	DEFINE A SPECIFIC RESEARCH QUESTION	06	SCREEN FULL TEXTS FOR RELEVANCE
02	DEFINE YOUR TEAM	07	EXTRACT DATA FROM STUDIES
03	CONDUCT A LITERATURE SEARCH	80	ASSESS THE RISK OF BIAS
04	WRITE AND REGISTER A PROTOCOL	09	DRAW CONCLUSIONS FROM YOUR DATA
05	SCREEN ABSTRACTS FOR RELEVANCE	10	MAKE YOUR SR PUBLICLY AVAILABLE

Data extraction of clinical trial registries using large language models

Simona Doneva

Disease

NER Method	Exact	Partial
BERT-base	0.61 (0.53, 0.68)	0.63 (0.55, 0.70)
BioLinkBERT	0.76 (0.68, 0.83)	0.78 (0.70, 0.84)
BioBERT	0.63 (0.55, 0.70)	0.65(0.57, 0.73)
GPT-3.5-turbo	0.26 (0.22, 0.32)	0.33 (0.27, 0.38)
GPT-4	0.45 (0.42, 0.57)	0.58 (0.50, 0.65)
AACT	0.39 (0.32, 0.47)	0.49 (0.41, 0.58)

Drug

NER Method	Exact	Partial
BERT-base	0.65 (0.60, 0.69)	0.69 (0.65, 0.73)
BioLinkBERT	0.78 (0.74, 0.81)	0.83 (0.79, 0.86)
BioBERT	0.73(0.69, 0.77)	0.79(0.76, 0.83)
GPT-3.5-turbo	0.40 (0.36, 0.43)	0.49 (0.45, 0.52)
GPT-4	0.49 (0.45, 0.53)	$0.61 \ (0.57, 0.65)$
AACT	0.34 (0.30, 0.39)	0.43 (0.38, 0.47)

A data warehouse presenting therapy translation for multiple sclerosis

What to remember from this talk

- Systematic reviews...:
 - ... Can assess translational hurdles of preclinical research.
 - ... Can benefit animal welfare.
 - ... Can be conducted within a reasonable time frame.
 - ... Can potentially be (semi-)automated.
 - ... Can foster reproducible research.

Interested in systematic reviews?

C·A·M·A·R·A·D·E·S Z·U·R·I·C·H

The Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Studies https://camarades.ch

STRIDE-Lab & Norecopa Summer School
Systematic reviews of animal
studies for evidence-based
preclinical research

Link to registration:

https://norecopa.no/summer-school-on-systematic-reviews-of-animal-studies/

Thank you

Funding

Swiss National Science Foundation

USZ

Universitäts Spital Zürich

MS

Schweizerische Multiple Sklerose

Universität Zürich^{UZH}

Team:

Ingrid Berg
David Brühschweiler
Julia Bugajska
Amelia Cannon
Simona Doneva
Bernard Hild
Dariya Ilchenko
Marianna Rosso

Collaborators:

Wolfgang Zürrer

Prof. Malcolm Macleod (Edinburgh, UK)
Prof. Daniel S. Reich (NINDS/NIH, USA)
Katharina Rehn, Per-Olov Andersson (Karolinska Institute, Sweden)
Prof. Leonhard Held, PhD (CRS, Zurich)
Eva Furrer, PhD (CRS, Zurich)
ANIMONE consortium

19

Umbrella review

Systematic reviews uncovering fundamental problems in translational research

Author	Year	Drug	Species	Sex	N (C)	N (Rx)	Dose Range	Time of Admin, min	Anaesthetic	Type of Ischemia	Route of Delivery	Outcome Measure(s
Alessandri	2000	Tirilazad	Rat	Male	6	6	29 mg/kg	15	Halothane	Permanent	IV	Infarct Volume
Beck	1991	Tirilazad	Rat	Unknown	12	10	4–40 mg/kg	-30	Halothane	Permanent	IP	Infarct Volume
Gross	1997	Tirilazad	Rabbit	Both	8	8	3 mg/kg	210	Ketamine	Thrombotic	IV	Infarct Volume
Hellström	1994	Tirilazad	Rat	Male	8	10	6 mg/kg	10	Halothane	Permanent	IV	Infarct Volume Neurologic Score
Lythgoe	1990	Tirilazad	Rat	Male	7	7	26 mg/kg	10	Pentobarbital	Permanent	IV	Infarct Volume
Öktem	2000	Tirilazad	Rabbit	Unknown	6	6	6 mg/kg	15	Ketamine	Permanent	IV	Infarct Volume Neurologic Score
Orozco	1995	Tirilazad	Rabbit	Unknown	10	10	3 mg/kg	120	cepromazine	Thrombotic		Infarct Volume
Park	1994	Tirilazad	Rat	Male	7	7	1.89–18.9 mg/kg	15	Halothane	Permanent	IV	Infarct Volume Neurologio Score
Schmid- Elaesser	1998	Tirilazad	Rat	Male	10	10	6 mg/kg	-15	Halothane	Reversible	IV	Infarct Volume
Schmid- Elaesser	1999b	Tirilazad	Rat	Male	10	10	6 mg/kg	-20	Halothane	Reversible	IV	Infarct Volume Neurologic Score
Schmid- Elaesser	1999a	Tirilazad	Rat	Male	10	10	6 mg/kg	-15	Halothane	Reversible	IV	Infarct Volume Neurologic Score
Schöller	2004	Tirilazad	Rat	Male	12	17	6 mg/kg	-30	Halothane	Permanent	IV	Infarct Volume Neurologic Score
Takeshima	1993	Tirilazad	Cat	Female	7	9	1.5 mg/kg	0–70	Halothane	Reversible	IV	Infarct Volume
Umemura	1994	Tirilazad	Rat	Male	5	5	1 mg/kg	4	Pentobarbital	Thrombotic	IV	Infarct Volume
Wilson	1992	Tirilazad	Rabbit	Both	10	8	6 mg/kg	-30	Ketamine	Thrombotic	IV	Infarct Volume
Xue	1991	Tirilazad	Rat	Male	19	19	20-30 mg/kg	360	Halothane	Reversible	IP	Infarct Volume
Zausinger	2003a	Tirilazad	Rat	Male	10	10	6 mg/kg	-20	Halothane	Reversible	IV	Infarct Volume Neurologic Score
Zausinger	2003b	Tirilazad	Rat	Male	12	10	6 mg/kg	0-300	Halothane	Reversible	IV	Infarct Volume Neurologic Score

IP indicates intraperitoneal; IV, intravenous

min 15 210 -15-300-70 360 -20

Admin.

0-300