All that Glitters Is not Gold: Using knockoffs for type-I error controlled prognostic and predictive variable selection

Konstantinos (Kostas) Sechidis Associate Director of Data Science Novartis

Basel Biometric Society (BBS) seminar 29th of August, 2024

UNOVARTIS | Reimagining Medicine

Agenda

- Variable selection via machine learning
- Quantifying uncertainty via knockoffs
- Adapt the methods to identify predictive biomarkers
- Case study in psoriatic arthritis trials

Variable/Feature selection

- One response Y: e.g. disease progression/status \succ
- A large number of variables (features) X: e.g. genotype information, digital sensors ... \succ

Only a <u>subset</u> of variables influences the outcome.

Important in healthcare, *i.e. identify prognostic biomarkers*

Variable/Feature selection

A variable is of relevant if: p(target|variable, other_variables) ≠ p(target|other_variables)

The optimal set $S \in \{X_1, ..., X_p\}$: $Y \perp \overline{S} \mid S$

> Actual set of relevant variables $S = \{X_1, X_4, X_6, X_p\}$

> Predicted set of relevant variables $\hat{S} = \{X_1, X_4, X_6, X_p, X_2\}$

 X_2 is a false discovery finding - the false discovery proportion is 1 out of 5 (20%)

Variable/Feature selection

target

Y

UNOVARTIS **Reimagining Medicine**

Minimize $\sum_{i} (y_i - \sum_{j} x_{ij} \beta_j)^2$ subject to $\sum_{j} |\beta_j| \leq s$ LASSO

UNOVARTIS | Reimagining Medicine

Motivating example

n = 500 patients

d = 200 variables (biomarkers)

$$Y = a(X_1 + \dots + X_{50}) + \epsilon$$

Relevant

Motivating example

n = 500 patients

d = 200 variables (biomarkers)

$$Y = a(X_1 + \dots + X_{50}) + \epsilon$$

Relevant

False Discovery Rate

False Discovery Proportion: $FDP = \frac{FP}{TP + FP}$

False Discovery Rate: $FDR \coloneqq \mathbb{E} [FDP]$

J. R. Statist. Soc. B (1995) 57, No. 1, pp. 289-300

> Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing

> > By YOAV BENJAMINI† and YOSEF HOCHBERG

Tel Aviv University, Israel

...for each variable, a corresponding *p*-value ...the tests should be independent

Quantifying uncertainty via knockoffs

Panning for gold: 'model-X' knockoffs for high dimensional controlled variable selection

Emmanuel Candès, Yingying Fan, Lucas Janson 💌, Jinchi Lv

First published: 08 January 2018 | https://doi.org/10.1111/rssb.12265

1st step: Construct knockoffs (fake variables)
2nd step: Calculate a knockoff statistic
3rd step: Calculate a threshold to control FDR

Y	X_1	X_2		X_p
1.128	-0.300	0.416		-0.328
-0.725	-0.310	-0.568		-0.396
-0.107	-0.876	-1.689		-2.554
0.791	0.308	0.804		-0.515
0.233	-0.038	0.425		-1.015
-0.350	0.931	-1.041		0.818
-0.849	-1.402	0.472		-0.208
-0.386	0.215	-0.513		1.822
:	:	:	:	:
-0.350	0.931	-1.041		0.818

\tilde{X}_1	\tilde{X}_2	 \tilde{X}_p
-0.120	-0.868	 -1.396
0.132	-0.213	 0.822
0.351	-1.441	 0.218
-0.756	-1.289	 -1.554
-0.330	0.216	 -0.228
-1.293	0.172	 -0.108
-0.032	0.422	 -0.015
0.381	-1.104	 0.218
÷	:	:
0.808	0.048	 -1.515

... extensions to FWER, PFER

User prespecifies an FDR level, eg FDR = 0.30

Knockoff filters

 $\geq 2^{nd} \text{ step: calculate a knockoff statistic}$ $x_1 x_2 x_3 x_4 x_5 x_6 x_7 \dots x_p \tilde{x}_1 \tilde{x}_2 \tilde{x}_3 \tilde{x}_4 \tilde{x}_5 \tilde{x}_6 \tilde{x}_7 \dots \tilde{x}_p Y$ ML model

<u>Random forests</u> $W_j^{\text{RF}} = |Z_{X_j}| - |Z_{\tilde{X}_j}|$ **<u>LASSO</u>** $W_j^{\text{LASSO}} = |\widehat{b_{X_j}}(\lambda)| - |\widehat{b_{\tilde{X}_j}}(\lambda)|$

 \geq 3rd step: Calculate a threshold to control FDR, eg FDR = 0.30

Knockoff filters

 $\geq 2^{nd} \text{ step: calculate a knockoff statistic}$ $x_1 x_2 x_3 x_4 x_5 x_6 x_7 \dots x_p \tilde{x}_1 \tilde{x}_2 \tilde{x}_3 \tilde{x}_4 \tilde{x}_5 \tilde{x}_6 \tilde{x}_7 \dots \tilde{x}_p Y$ ML model

<u>Random forests</u> $W_j^{\text{RF}} = |Z_{X_j}| - |Z_{\tilde{X}_j}|$ **<u>LASSO</u>** $W_j^{\text{LASSO}} = |\widehat{b_{X_j}}(\lambda)| - |\widehat{b_{\tilde{X}_j}}(\lambda)|$

 \geq 3rd step: Calculate a threshold to control FDR, eg FDR = 0.30

Knockoff filters

Reimagining Medicine

 \succ 3rd step: Calculate a threshold to control FDR, eg FDR = 0.30 $\widehat{\text{FDP}}(t) = \frac{1 + |\{j: W_j \le -t\}|}{|\{j: W_i > t\}|} = 0.28$ -+++

|W|

Using knockoffs in clinical trial data

Target variable

1st step: Construct knockoffs (fake variables) 2nd step: Calculate a knockoff statistic 3rd step: Calculate a threshold to control FDR

prognostic biomarkers

in Medicine

RESEARCH ARTICLE

Sequential knockoffs for continuous and categorical predictors: With application to a large psoriatic arthritis clinical trial pool

Matthias Kormaksson 🔀 Luke J. Kelly, Xuan Zhu, Sibylle Haemmerle, Luminita Pricop, David Ohlssen

predictive biomarkers

From FS to predictive biomarker discovery

EGFR: Epidermal Growth Factor Receptor

UNOVARTIS Reimagining Medicine

From FS to predictive biomarker discovery

UNOVARTIS

Reimagining Medicine

Knockoffs for predictive biomarker discovery

1st step: Construct knockoffs – SAME AS BEFORE

2nd step: Calculate a knockoff statistic – **NOVEL METHODS**

3rd step: Calculate a threshold to control FDR – **SAME AS BEFORE**

Filter 1: Using LASSO regression coefficients of the interaction terms

Tree 1 Tree 2 Tree 3 [X, X]

 $W_{i}^{\mathrm{CF}} = Z_{i}^{\mathrm{CF}} - \tilde{Z}_{i}^{\mathrm{CF}}$

Filter 2: Using importance scores derived from causal forest

Novartis case study: Psoriatic arthritis (PsA)

- > PsA is an inflammatory disease that affects many areas of the body.
- > Cosentyx is indicated for the treatment of adult patients with active psoriatic arthritis.
- Four Phase III trials were analysed: FUTURE 2-5

Trial/ Dose	Placebo	75 mg	150 mg NL	150 mg	300 mg	Total
FUTURE2 (NCT01752634)	98	99	0	100	100	397
FUTURE3 (NCT01989468)	137	0	0	138	139	414
FUTURE4 (NCT02294227)	114	0	113	114	0	341
FUTURE5 (NCT02404350)	332	0	222	220	222	996
Total	681	99	335	572	461	2148

https://doi.org/10.1007/s40267-021-00814-5

- Primary endpoint is a binary composite score ACR50 in week 16.
 - ➤ Y=1 responder ☺
 - ➤ Y=0 non responder ⊗
- ➤ 57 variables (baseline variables)

Predictive markers by controlling FDR = 20%

Knockoff framework in practice

When we put a framework like this into practice many issues arise:

- How to handle categorical variables?
- How the methods scale with sample size?
- How to choose the knockoff statistic?
- What is the computational cost?
- Which type-I error measure to control?

UNOVARTIS | Reimagining Medicine

Clinical Pharmacology & Therapeutics

original research 🛛 🔂 Full Access

All that Glitters Is not Gold: Type-I Error Controlled Variable Selection from Clinical Trial Data

Manuela R. Zimmermann, Mark Baillie, Matthias Kormaksson, David Ohlssen, Konstantinos Sechidis 💌

First published: 28 February 2024 | https://doi.org/10.1002/cpt.3211

Conclusions

- ✓ Knockoffs provide a powerful framework for ML based controlled discoveries.
- ✓ Our work used knockoffs for controlled predictive biomarker identifications.
- We developed the knockofftools, an R package for controlled discoveries of prognostic/predictive markers in a wide variety of scenarios in terms of endpoint, error-types, filter types.

Biomarker type

-Prognostic -Predictive

Endpoint type

-Continuous -Binary -Time to event

Filter type

-Regularised regression -Random Forest -Causal Forest

Thank you

Kostas Sechidis kostas.sechidis@novartis.com