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Context: 
Multimodal High-Dimensional Data for Biomarker Discovery

■ High-dimensional biological data hold promise for novel biomarkers

■ ML is an excellent framework for flexible function estimation with heterogeneous data 

■ Use strength of stochastic optimization for building complex custom models (aka deep learning)

■ Need for statistical decision rules constraining interpretation of ML results

■ Statistical approach to variable importance literature needed



3

Variable importance: 
Estimating the influence inputs on model predictions

[e.g. Hooker et al 2018, arXiv:1806.10758; Zien et 
al 2009, Lecture Notes in Computer Science]
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Prefer variable importance with statistical 

guarantees

■ Ideal goal: find all relevant variables and don’t pick 

up irrelevant variables -> control false discovery rate 

[Candes et al 2017, J Royal Stat Soc]

■ Impact: Critical for discover work and study design to 

pick up the good biomarker candidates 

■ Simplifying liability management and cut down 

development time by using statistical guarantees

■ E.g. guarantees obviate excessive sensitivity analyses

Variable importance: 
Estimating the influence inputs on model predictions
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Permutation importance
[Breiman, Machine Learning, 2001]

Is variable j important? Permute j on testing data and track 
performance change of model
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Permutation importance is alive and well
[Breiman, Machine Learning, 2001]

Modern flavors of permutation 

importance in life science context

● recent integration in artificial neural 

network architecture (permfit) and 

successful application in large 

genetics datasets [Mi et al 2021, Nat 

Comms]

● directly focus on tracking loss 

function of model after permutations

● Statistically valid p-values
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Permutation importance is alive and well
[Breiman, Machine Learning, 2001]

Modern flavors of permutation 

importance in life-science context

● recent integration in artificial neural 

network architecture (permfit) and 

successful application in large 

genetics datasets [Mi et al 2021, Nat 

Comms]

● track focus loss function after 

permutations

● statistically valid p-values

● breaks if variables are 

correlated! [Chamma et al 2023]
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Paper #1
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Conditional permutation importance (CPI)
[Chamma, Engemann, Thirion, 2023, NeurIPS]

In a nutshell

● Statistically valid p-values even if 

variables are correlated! 

● Fast because we can use 

approximate estimator during 

sampling phase (e.g. random forest) 

and avoid refitting (cf. vs LOCO 

approach)

● Converges to permfit if variables are 

uncorrelated

● Developed VS DNN architecture but 

flexible design
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Standard permutations:     Decomposition of variable for conditional permutation: 

Observation: approaches tend to be 
either good at Type-1 error or AUC

Large-scale benchmarking of variable importance methods:
Accurate detection and ranking (AUC) VS false positives (type-1 error)

1
3

[Chamma, Engemann & Thirion, 2023, NeurIPS]
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Standard permutations:     Decomposition of variable for conditional permutation: 

Proposed method highly sensitive & 
controlling type-1 error

CPI-DNN is good at ranking while avoiding false positives!
Other methods good at either detecting OR controlling type-1 error

1
4

[Chamma, Engemann & Thirion, 2023, NeurIPS]
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Standard permutations:     Decomposition of variable for conditional permutation: 

Need for variable importance measures with support for correlated 
variables and in the large-scale biomedical setting  CPI-DNN 

1
5

Proposed method robust across  
#samples & generative scenarios[Chamma, Engemann & Thirion, 2023, NeurIPS]
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Deep-dive into CPI-DNN - complexity
1
6

[Chamma, Engemann & Thirion, 2023, NeurIPS]
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Limits of conditional inference
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Limits of conditional inference

Mutual cancellation!
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Limits of conditional inference – grouping to the rescue?

Mutual cancellation!
Mutual cancellation!
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Paper #2
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Block-based Conditional Permutation Importance (CPI)
[Chamma, Thirion, Engemann, 2024, AAAI]

In a nutshell

● Statistically valid p-values per block 

● Speed gains through internal 

stacking

● Converges to CPI if group size = 1 and 

to permfit if variables are uncorrelated

● Developed Vs DNN architecture but 

flexible design
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Make use of stacking
[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking

● Original idea: Enhancing predictions 

by stacking multiple prediction 

models [Wolpert, Neural Networks, 

1992]
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● Adaptation: Combine multiple input 

domains and groups of variables 

[Rahim et al 2015, Liem et al 2017,  

Engemann et al 2020, …]
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Make use of stacking
[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking

● Original idea: Enhancing predictions 

by stacking multiple prediction 

models [Wolpert, Neural Networks, 

1992]

● Adaptation: Combine multiple input 

domains and groups of variables 

[Rahim et al 2015, Liem et al 2017,  

Engemann et al 2020, …]

● New: Integrate stacking into DNN 

architecture as linear sublayer
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BCPI: correct block ranking & controlling type-1 error
[Chamma, Thirion, Engemann, 2024, AAAI]
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BCPI: correct block ranking & controlling type-1 error
[Chamma, Thirion, Engemann, 2024, AAAI]
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BCPI: speed gains through internal stacking
[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking improves computation times
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BCPI: speed gains through internal stacking
[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking improves computation times

while preserving type-1 error control and high block-ranking performance
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Empirical example: Proxy measures of mental health?
[Dadi, … & Engemann, 2021, GigaScience]
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Empirical example: Proxy measures of mental health?
[Dadi, … & Engemann, 2021, GigaScience]
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Dadi et al. 2021 revisited: BCPI for fine-grained inference 
[Chamma, Thirion, Engemann, 2024, AAAI]

BCPI for age prediction: lifestyle factors, anatomical & diffusion MRI & education provide non-redundant 

information 
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Dadi et al. 2021 revisited: BCPI for fine-grained inference 
[Chamma, Thirion, Engemann, 2024, AAAI]

BCPI for age prediction: lifestyle factors, anatomical & diffusion MRI & education provide non-redundant 

information 

BCPI for variable selection: reduced model (cross-fitted) preserves prediction performance
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Conditional permutation importance methods

■ \

■ CPI plus expressive base learner (e.g. DNN) provides 

strong detection-performance with type-1 error 

control in the presence of correlated variables

■ Faster than e.g. LOCO methods

■ BCPI extends and generalizes this behavior to high-

dimensional structured data with extreme 

correlations via group-level inference

■ Flexible toolbox: plug your own models

Take home messages
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