

Statistical Interpretation of High-Dimensional Prediction Models using Conditional Permutation Importance

BBS Seminar

Denis Engemann, Biomarker & Experimental Medicine Leader, Senior Scientist, Roche Pharma Research & Early Development (pRED), Neuroscience & Rare Diseases

Credits:

Ahmad Chamma, PhD, Inria Paris-Saclay Bertrand Thirion, PhD, Inria Paris-Saclay

29.8.2024 | public knowledge

Context: Multimodal High-Dimensional Data for Biomarker Discovery

- High-dimensional biological data hold promise for novel biomarkers
- ML is an excellent framework for flexible function estimation with heterogeneous data
- Use strength of stochastic optimization for building complex custom models (aka deep learning)
- Need for statistical decision rules constraining interpretation of ML results
- Statistical approach to variable importance literature needed

[e.g. Hooker et al 2018, arXiv:1806.10758; Zien et al 2009, Lecture Notes in Computer Science] Estimating the influence inputs on model predictions

Variable importance: Estimating the influence inputs on model predictions

Prefer variable importance with statistical guarantees

- Ideal goal: find all relevant variables and don't pick up irrelevant variables -> control false discovery rate [Candes et al 2017, J Royal Stat Soc]
- Impact: Critical for discover work and study design to pick up the good biomarker candidates
- Simplifying liability management and cut down development time by using statistical guarantees
- E.g. guarantees obviate excessive sensitivity analyses

Permutation importance

[Breiman, Machine Learning, 2001]

Is variable **j** important?

Permute **j** on testing data and track performance change of model

Permutation importance is alive and well

[Breiman, Machine Learning, 2001]

Modern flavors of permutation

importance in life science context

- recent integration in artificial neural network architecture (permfit) and successful application in large genetics datasets [Mi et al 2021, Nat Comms]
- directly focus on tracking loss function of model after permutations
- Statistically valid p-values

Permutation importance is alive and well

[Breiman, Machine Learning, 2001]

Modern flavors of permutation

importance in life-science context

 recent integration in artificial neural network architecture (permfit) and successful application in large genetics datasets [Mi et al 2021, Nat

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-021-22756-2 OPEN

Permutation-based identification of important biomarkers for complex diseases via machine learning models

Xinlei Mi^{® 1}, Baiming Zou², Fei Zou^{® 2} & Jianhua Hu^{® 3⊠}

Permutation importance is alive and well

[Breiman, Machine Learning, 2001]

Modern flavors of permutation

importance in life-science context

- recent integration in artificial neural network architecture (permfit) and successful application in large genetics datasets [Mi et al 2021, Nat Comms]
- track focus loss function after permutations
- statistically valid p-values
- breaks if variables are
 - correlated [Chamma at al 2027]

10

• • • • • <u>ф</u> + ф َرِي 🔊 proceedings.neurips.cc

Statistically Valid Variable Importance Assessment through Conditional Permutations

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Report an Issue | Name Change Policy

[Chamma, Engemann, Thirion, 2023, NeurIPS]

Paper #1

Conditional permutation importance (CPI) [Chamma, Engemann, Thirion, 2023, NeurIPS]

• Let $e^{j} = x^{j} - \hat{x}^{j}$ with $\hat{x}^{j} = \mathbb{E}(x^{j}|X^{-j})$

Samling x^j from the conditional distribution

 $\mathbf{\tilde{x}^{j}} = \mathbf{\hat{x}^{j}} + \{\epsilon^{j}\}^{perm}$

Why? The dependency between the variable of interest and the remaining variables is preserved.

In a nutshell

- Statistically valid p-values even if variables are correlated!
 - Fast because we can use
 approximate estimator during
 sampling phase (e.g. random forest)
 and avoid refitting (cf. vs LOCO
 approach)
- Converges to permfit if variables are uncorrelated
- Developed VS DNN architecture but

Standard permutations:

[Chamma, Engemann & Thirion, 2023, NeurIPS]

Observation: approaches tend to be either good at Type-1 error or AU€

3

CPI-DNN is good at ranking while avoiding false positives! Other methods good at either detecting OR controlling type-1 error

Standard permutations: Decomposition of variable for conditional permutation:

[Chamma, Engemann & Thirion, 2023, NeurIPS]

Proposed method highly sensitive & controlling type-1 error ¹⁴

Need for variable importance measures with support for correlated by variables and in the large-scale biomedical setting CPI-DNN

Standard permutations: Decomposition of variable for conditional permutation:

Deep-dive into CPI-DNN - complexity

Figure S2: *CPI-DNN* vs *LOCO-DNN*: Performance at detecting important variables on simulated data with n = 1000, p = 50 and $\rho = 0.8$ in terms of (AUC score), Type-I error, Power and Time. Dashed line: targeted type-I error rate. Solid line: chance level.

[Chamma, Engemann & Thirion, 2023, NeurIPS]

Limits of conditional inference

Prediction Problem

Variables extremely correlated

Limits of conditional inference

Limits of conditional inference – grouping to the rescue?

●●● □ | • < > (

经3 C

Ô + Ô

Variable Importance in High-Dimensional Settings Requires Grouping

Ahmad Chamma

Inria-Saclay, Palaiseau, France Université Paris-Saclay CEA Saclay

Bertrand Thirion

Inria-Saclay, Palaiseau, France Université Paris-Saclay CEA Saclay

Denis Engemann

Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd., Basel, Switzerland

DOI: https://doi.org/10.1609/aaai.v38i10.28997

Keywords: ML: Transparent, Interpretable, Explainable ML, ML: Classification and Regression, ML: Deep Learning Algorithms, ML: Dimensionality Reduction/Feature Selection, ML: Ensemble Methods

Proceedings of the 38th AAAI Conference on Artificial Intelligence

bruary 20-27, 202

Edited by Jermifer Dy, Srinam Natarajan & Michael Wooldridge

Paper #2

[Chamma, Thirion, Engemann, 2024, AAAI]

Block-based Conditional Permutation Importance (CPI)

[Chamma, Thirion, Engemann, 2024, AAAI]

In a nutshell

- Statistically valid p-values **per block**
- Speed gains through **internal stacking**
- Converges to CPI if group size = 1 and to permfit if variables are uncorrelated
- Developed Vs DNN architecture but flexible design

Make use of stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking

• **Original idea:** Enhancing predictions

by stacking multiple prediction

models [Wolpert, Neural Networks,

1992]

Make use of stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking

• **Original idea:** Enhancing predictions

by stacking multiple prediction models [Wolpert, Neural Networks, 1992]

Adaptation: Combine multiple input
domains and groups of variables
[Rahim et al 2015, Liem et al 2017,
Engemann et al 2020, ...]

Make use of stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

G: Original group, **G**': Linear projected group

Stacking

• **Original idea:** Enhancing predictions

by stacking multiple prediction models [Wolpert, Neural Networks, 1992]

- Adaptation: Combine multiple input domains and groups of variables
 [Rahim et al 2015, Liem et al 2017, Engemann et al 2020, ...]
- **New:** Integrate stacking into DNN
 - architecture as linear sublayer ²⁴

BCPI: correct block ranking & controlling type-1 error [Chamma, Thirion, Engemann, 2024, AAAI]

BCPI: correct block ranking & controlling type-1 error [Chamma, Thirion, Engemann, 2024, AAAI]

26

BCPI: speed gains through internal stacking [Chamma, Thirion, Engemann, 2024, AAAI]

Stacking improves computation times

BCPI: speed gains through internal stacking [Chamma, Thirion, Engemann, 2024, AAAI]

Group Stacking No Stacking AUC score Type-I error Power Time (seconds) Stacking 1 Т 9 No Stacking 0 O . I. I. I. φ Stacking О I. 0.4 0.8 0.0 0.4 0.8 1.000 3,000 7,000 0.0 0.4 0.6 0.8 1.0

Stacking improves computation times

while preserving type-1 error control and high block-ranking performance

Empirical example: Proxy measures of mental health? [Dadi, ... & Engemann, 2021, GigaScience]

Empirical example: Proxy measures of mental health? [Dadi, ... & Engemann, 2021, GigaScience]

Dadi et al. 2021 revisited: BCPI for fine-grained inference [Chamma, Thirion, Engemann, 2024, AAAI]

BCPI for age prediction: lifestyle factors, anatomical & diffusion MRI & education provide non-redundant information

Dadi et al. 2021 revisited: BCPI for fine-grained inference

[Chamma, Thirion, Engemann, 2024, AAAI]

BCPI for age prediction: lifestyle factors, anatomical & diffusion MRI & education provide non-redundant information

BCPI for variable selection: reduced model (cross-fitted) preserves prediction performance

Take home messages

Conditional permutation importance methods

- CPI plus expressive base learner (e.g. DNN) provides strong detection-performance with type-1 error control in the presence of correlated variables
- Faster than e.g. LOCO methods
- BCPI extends and generalizes this behavior to highdimensional structured data with extreme correlations via group-level inference
- Flexible toolbox: plug your own models