

Statistical Interpretation of High-Dimensional Prediction Models using Conditional Permutation Importance

BBS Seminar

Denis Engemann, Biomarker & Experimental Medicine Leader, Senior Scientist, Roche Pharma Research & Early Development (pRED), Neuroscience & Rare Diseases

Credits:

Ahmad Chamma, PhD, Inria Paris-Saclay Bertrand Thirion, PhD, Inria Paris-Saclay

29.8.2024 | public knowledge

Context: Multimodal High-Dimensional Data for Biomarker Discovery

- High-dimensional biological data hold promise for novel biomarkers
- ML is an excellent framework for flexible function estimation with heterogeneous data
- Use strength of stochastic optimization for building complex custom models (aka deep learning)
- Need for statistical decision rules constraining interpretation of ML results
- Statistical approach to variable importance literature needed

Variable importance: Estimating the influence inputs on model predictions [e.g. Hooker et al 2018, arXiv:1806.10758; Zien et al 2009, Lecture Notes in Computer Science]

Variable importance: Estimating the influence inputs on model predictions

Prefer variable importance with statistical guarantees

- **Ideal goal:** find all relevant variables and don't pick up irrelevant variables -> control false discovery rate [Candes et al 2017, J Royal Stat Soc]
- **Impact:** Critical for discover work and study design to pick up the good biomarker candidates
- Simplifying liability management and cut down development time by using **statistical guarantees**
- E.g. guarantees obviate excessive sensitivity analyses

Permutation importance

[Breiman, Machine Learning, 2001]

Is variable **j** important? **Permute j** on testing data and track performance change of model

Permutation importance is alive and well

[Breiman, Machine Learning, 2001]

Modern flavors of permutation

importance in life science context

- recent integration in artificial neural network architecture (permfit) and successful application in large genetics datasets [Mi et al 2021, Nat Comms]
	- directly focus on tracking loss function of model after permutations
- Statistically valid p-values

Permutation importance is alive and well

[Breiman, Machine Learning, 2001]

Modern flavors of permutation

importance in life-science context

● recent integration in artificial neural network architecture (permfit) and successful application in large genetics datasets [Mi et al 2021, Nat

 $\boxed{\bullet}$ Check for updates

https://doi.org/10.1038/s41467-021-22756-2 **OPEN**

Permutation-based identification of important
biomarkers for complex diseases via machine learning models

Xinlei Mi^{o 1}, Baiming Zou², Fei Zou^{o 2} & Jianhua Hu^{o 3⊠}

Permutation importance is alive and well

[Breiman, Machine Learning, 2001]

Modern flavors of permutation

importance in life-science context

- recent integration in artificial neural network architecture (permfit) and successful application in large genetics datasets [Mi et al 2021, Nat Comms]
- track focus loss function after permutations
- statistically valid p-values
- **breaks if variables are**
- 10

correlated! [Chamma et al 2023]

Statistically Valid Variable Importance

proceedings.neurips.cc

930

Assessment through Conditional Permutations

Part of Advances in Neural Information Processing Systems 36 (NeurlPS 2023) Main Conference Track

「同

 $\bullet \bullet \bullet$ \Box \vee \leftarrow \rightarrow

Report an Issue | Name Change Policy

[Chamma, Engemann, Thirion, 2023, NeurIPS] ¹¹

Paper #1

 \mathbb{A} + \mathbb{A}

Conditional permutation importance (CPI) [Chamma, Engemann, Thirion, 2023, NeurIPS]

Let $e^j = x^j - \hat{x}^j$ with $\hat{x}^j = \mathbb{E}(x^j | X^{-j})$

Samling x^j from the conditional distribution

 $\tilde{\mathbf{x}}^{\mathbf{j}} = \hat{\mathbf{x}}^{\mathbf{j}} + {\mathbf{\epsilon}^{\mathbf{j}}}$

Why? The dependency between the variable of interest and the remaining variables is preserved.

In a nutshell

- Statistically valid p-values **even if variables are correlated!**
	- Fast because we can use approximate estimator during sampling phase (e.g. random forest) and avoid refitting (cf. vs LOCO approach)
- Converges to permfit if variables are uncorrelated
- Developed VS DNN architecture But

Standard permutations:

[Chamma, Engemann & Thirion, 2023, NeurIPS]

either good at Type-1 error or AUC **Observation:** approaches tend to be

1 3

4 CPI-DNN is good at ranking while avoiding false positives! Roche) Other methods good at either detecting OR controlling type-1 error

Standard permutations: Decomposition of variable for conditional permutation:

[Chamma, Engemann & Thirion, 2023, NeurIPS]

14 **Proposed method** highly sensitive & controlling type-1 error

1

Need for variable importance measures with support for correlated oche variables and in the large-scale biomedical setting CPI-DNN 5

1

Standard permutations: Decomposition of variable for conditional permutation:

Deep-dive into CPI-DNN - complexity

Figure S2: CPI-DNN vs LOCO-DNN: Performance at detecting important variables on simulated data with $n = 1000$, $p = 50$ and $\rho = 0.8$ in terms of (AUC score), Type-I error, Power and Time. Dashed line: targeted type-I error rate. Solid line: chance level.

[Chamma, Engemann & Thirion, 2023, NeurIPS]

Limits of conditional inference

Prediction Problem

Variables extremely correlated

Limits of conditional inference

Limits of conditional inference – grouping to the rescue?

$\bullet\bullet\bullet$ $\square\vdash\checkmark\Rightarrow\checkmark$ B

a ois.aaai.org

 \circledcirc

 $\mathbb{A} + \mathbb{C}$

bruary 20-27, 202

Variable Importance in High-Dimensional Settings **Requires Grouping**

Ahmad Chamma

Inria-Saclay, Palaiseau, France Université Paris-Saclay CEA Saclay

Bertrand Thirion

Inria-Saclay, Palaiseau, France Université Paris-Saclay CEA Saclay

Denis Engemann

Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland

DOI: https://doi.org/10.1609/aaai.v38i10.28997

Keywords: ML: Transparent, Interpretable, Explainable ML, ML: Classification and Regression, ML: Deep Learning Algorithms, ML: Dimensionality Reduction/Feature Selection, ML: Ensemble Methods

Proceedings of the 38th AAAI Conference on Artificial Intelligence

AAAAI Editori ha lengiter Du Scinson Naturalun & Michael Wooldside

Paper #2

[Chamma, Thirion, Engemann, 2024, AAAI] ²⁰

Block-based Conditional Permutation Importance (CPI)

[Chamma, Thirion, Engemann, 2024, AAAI]

In a nutshell

- Statistically valid p-values **per block**
- Speed gains through **internal stacking**
- Converges to CPI if group size $= 1$ and to permfit if variables are uncorrelated
- Developed Vs DNN architecture but flexible design

Make use of stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking

Original idea: Enhancing predictions

by stacking multiple prediction

models [Wolpert, Neural Networks,

1992]

Make use of stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

Stacking

Original idea: Enhancing predictions

by stacking multiple prediction models [Wolpert, Neural Networks, 1992]

Adaptation: Combine multiple input domains and groups of variables [Rahim et al 2015, Liem et al 2017, Engemann et al 2020, …]

Make use of stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

 G : Original group, G' : Linear projected group

Stacking

Original idea: Enhancing predictions

by stacking multiple prediction models [Wolpert, Neural Networks, 1992]

- **Adaptation**: Combine multiple input domains and groups of variables [Rahim et al 2015, Liem et al 2017, Engemann et al 2020, …]
- **New:** Integrate stacking into DNN
	- 24 architecture as linear sublayer

BCPI: correct block ranking & controlling type-1 error [Chamma, Thirion, Engemann, 2024, AAAI]

BCPI: correct block ranking & controlling type-1 error [Chamma, Thirion, Engemann, 2024, AAAI]

BCPI: speed gains through internal stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

Group Stacking • No Stacking **AUC score** Time (seconds) **Type-I error Power** Stacking \blacksquare 6 No Stacking O **CO** \blacksquare \mathbf{I} \blacksquare \mathbf{I} ò Stacking \bullet \blacksquare \blacksquare 0.0 0.4 0.8 0.0 0.4 0.8 1.000 3,000 7,000 1.0 0.4 0.6 0.8

Stacking improves computation times

BCPI: speed gains through internal stacking

[Chamma, Thirion, Engemann, 2024, AAAI]

Group Stacking • No Stacking **AUC score Type-I error Power** Time (seconds) Stacking . \blacksquare b No Stacking O O **CO** \blacksquare \mathbf{I} \mathbf{I} \mathbf{I} Ò Stacking O O \blacksquare 0.4 0.8 0.0 0.4 0.8 1.000 3,000 7,000 0.0 0.4 0.6 0.8 1.0

Stacking improves computation times

while preserving type-1 error control and high block-ranking performance

Empirical example: Proxy measures of mental health? [Dadi, … & Engemann, 2021, GigaScience]

Empirical example: Proxy measures of mental health? [Dadi, … & Engemann, 2021, GigaScience]

Dadi et al. 2021 revisited: BCPI for fine-grained inference [Chamma, Thirion, Engemann, 2024, AAAI]

BCPI for age prediction: lifestyle factors, anatomical & diffusion MRI & education provide non-redundant information

Dadi et al. 2021 revisited: BCPI for fine-grained inference

[Chamma, Thirion, Engemann, 2024, AAAI]

BCPI for age prediction: lifestyle factors, anatomical & diffusion MRI & education provide non-redundant information

BCPI for variable selection: reduced model (cross-fitted) preserves prediction performance

Take home messages

Conditional permutation importance methods

- **CPI** plus expressive base learner (e.g. DNN) provides strong detection-performance with type-1 error control in the presence of **correlated variables**
- Faster than e.g. LOCO methods

■ ****

- **BCPI** extends and generalizes this behavior to **highdimensional structured** data with **extreme correlations** via group-level inference
- **Flexible toolbox:** plug your own models