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One-slide overview

Challenge: Collinearity/correlations make it challenging to perform controlled
variable selection.

Often, we can tell that some variables influence the outcome Y , but we don’t
know which ones.

Even after fitting a model, it’s unclear how to localize which variables may
affect Y .

This talk: Given a model, how can we “localize” signal variables?

This talk is not about fitting the model!

It is about extracting useful information from a pre-fit model.

For this talk, I will assume the model is Bayesian.

Empirically: Increases power 20-50% on a large-scale GWAS with ≤ 1 min of
added computation!
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Motivation I: genetic fine-mapping

UK Biobank dataset (n ≈ 377, 000):

Y is disease status

(X1, . . . , Xp) are genetic variants (p ≈ 19, 000, 000)

Question: which features Xj influence Y ? Which are “signals?”

For simplicity, let’s temporarily assume a linear model:

Y = XTβ + ϵ with E [ϵ | X] = 0

Challenge:

(X1, . . . , Xp) exhibit strong local correlations, e.g., Cor(X1, X2) = 0.999

We may have no power to detect that β1 ̸= 0

But, maybe we know (X1, X2) contains a signal, i.e., β1,2 ̸= 0!
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Motivation in a picture

Figure: Cartoon Manhattan plot of genome; y-axis shows a measure of Corr(Y,Xj) for
j = 1, . . . , 100.
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Motivation in a picture

Figure: Cartoon Manhattan plot of genome; y-axis shows a measure of Corr(Y,Xj) for
j = 1, . . . , 100.

If you fit a linear model, you might find that nothing is significant!
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Motivation II: exploratory analysis of clinical trials

Correlated features appear in exploratory analysis of clinical trials:

Proteomic/genomic data, even demographic data (age, baselines, etc)

Throughout, think of X as a generic set of features
(could include treatments/interaction terms)

(a) Blum et al. (2010) (b) Siedner et al. (2017)

Moral: for small to medium n, moderate correlations make it harder to identify
treatment effect moderators / prognostic variables.
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Contribution

Goals:

Discover disjoint groups G1, . . . , GR ⊂ {1, . . . , p} which each contain a signal

Make R large and G1, . . . , GR small—both matter a lot!

Control (e.g.) the FDR

Method: Bayesian Linear Programming (BLiP).

Input: posterior samples from any Bayesian model (e.g. Bayesian GLM/GAM)

Output: groups G1, . . . , GR that maximize power subject to FDR control.⋆

⋆ FDR control assumes the Bayesian model is well-specified.
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Contribution in a picture

Input: Samples from sparse Bayesian linear model.
Output:

Figure: Cartoon of partial Manhattan plot of genome
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Notation and assumptions

Notation: X ∈ Rp are features, Y ∈ R is an outcome, D is dataset.

Assumption 1: The analyst specifies a Bayesian model which implies

E [Y | X] = fθ(X) for θ ∈ Θ

with θ ∼ π sampled from some prior distribution.

S = {j : fθ(X) depends on Xj} ⊂ [p] is the set of signal variables.

Assumption 2: The analyst can sample from the law of θ | D.

These assumptions are not always reasonable! (see Section 5)

But there is an enormous literature on sampling from these models

Our question: how do we extract useful insights from these models after
fitting them?
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Problem statement (I)

Goal:

Discover disjoint groups G1, . . . , GR ⊂ {1, . . . , p} which each contain a signal

Make R large and G1, . . . , GR small—both matter a lot!

Control the (Bayesian) FDR

Emphasis: we want to pick G1, . . . , GR after seeing the data. E.g.:

How to group the features depends on the (unknown) signal size!
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Problem statement (II)

Don’t want to narrow potential discovery regions until after seeing data

Goal: look at the data and outputs regions G1, . . . , GR so as to:

max E [Power(G1, . . . , GR) | Data]

s.t. FDR := E
[
#{Gr containing no signal}

max(1, R)
| Data

]
≤ q,

G1, . . . , GR ⊂ [p] are disjoint.

What does high Power() look like?

As many (true) discovered regions Gr as possible

Discovered regions Gr should be as small as possible

Existing work: no formalization of what “power” means, so cannot optimize it.
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Defining resolution-adjusted power

Define a weighting function w(G) that measures value of discovering a group

Should penalize larger groups

Canonical choice is inverse-size weighting: w(G) = 1/|G|
Sum weights of true rejections to get Power():

Power(G1, . . . , GR) =

R∑
r=1

IGr
w(Gr),

where IG = I(G ∩ S ̸= ∅) is the indicator that G contains a signal (i.e., is a
true discovery)

Remarks:

Different w can accommodate very different scientific objections

In practice, do we exactly know our “utility function”?

We will see that the results are not too sensitive to precise specification
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Method: Bayesian Linear Programming (I)

Method: directly solve the optimization problem:

max E [Power(G1, . . . , GR) | Data]

s.t. FDR := E
[
#{Gr containing no signal}

max(1, R)
| Data

]
≤ q,

G1, . . . , GR ⊂ [p] are disjoint.

Key observation: the power of a Bayesian method that discovers G1, . . . , GR is

E[Power(G1, . . . , GR) | Data] = E

[
R∑

r=1

IGr
w(Gr)

∣∣∣∣∣ Data
]

=
∑
G⊆[p]

pGw(G)zG,

pG = P (G contains a signal | Data) can be computed Assumptions 1-2

zG ∈ {0, 1} is indicator that we discover G
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Method: Bayesian Linear Programming (II)

Theorem: the optimization problem is equivalent the following integer LP:

max
{zG}G⊆[p]

∑
G

pGw(G)zG (Power)

s.t.
∑
G

(1− pG − q)zG ≤ 0 (FDR)∑
G⊂[p]:j∈G

zG ≤ 1 ∀j = 1, . . . , p (disjoint discoveries)

for decision variables zG ∈ {0, 1}.

This is progress. Yet we have 2p integer decision variables.
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Method: Bayesian Linear Programming (III)

Problem: 2p integer decision variables.
Solutions:

1 Narrow the search space after looking at the data
Sublinear algorithm to discard {G : pG ≤ 0.001}

2 Narrow the search space by imposing desirable structural constraints
E.g., ensure |G| ≤ 25

3 If needed, solve the continuous relaxed LP; then round to obtain integers.

Result: Provable FDR control, verifiable near-optimality.

Figure: Expected power (BLiP) vs. upper bound
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Putting it all together: BLiP

Input: Nearly any Bayesian model (via MCMC, variational inference) and any
desired structural constraints on the discovery set

Output: disjoint discoveries which (1) verifiably nearly maximize power and (2)
control the FDR.

Figure: p denotes dimension of linear model being fit, with n = p/2
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Fine-mapping setup

Dataset: n ≈ 337, 000, p ≈ 19, 000, 000, four traits of interest.

Bayesian model: SuSiE (Wang et al., 2020)

1 SuSiE is a sparse Bayesian linear model that can be fit highly efficiently.

2 Like BLiP, SuSiE returns regions GSuSiE
1 , . . . , GSuSiE

R of the genome.

3 However, SuSiE’s regions are constructed heuristically.

Can we do better using a principled approach (BLiP)?

We run BLiP on top of a pre-fit SuSiE model from Weissbrod et al. (2019).
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Fine-mapping results

UK Biobank data: n ≈ 337, 000, p ≈ 19, 000, 000; BLiP takes < 1 min per trait
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Are our results real?

Trait Corroboration Rate (SuSiE) Corroboration Rate (new)
Height 53.5% 45.0%
HDL 57.0% 50.0%
LDL 67.3% 60.0%

Cardiovascular 82.2% 65.2%

Table: The proportion of discoveries which can be corroborated by a separate study in
the NHGRI-EBI GWAS Catalog (Buniello et al., 2018).

Note the right-hand column only contains entirely new discoveries made by BLiP.

Our interpretation: this is a positive result, since all of the “low-hanging fruit”
should lie in the left-hand column. Nonetheless, the numbers are comparable.
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BLiP with knockoffs?

A weakness: BLiP assumes the Bayesian model is well-specified.

Gablenz and Sabatti (2024) also solve the BLiP optimization problem...

...but obtain model-free frequentist FDR guarantees.

Insights:

Use knockoffs for model-free error control (Candes et al., 2018)

Technical insight: use e-values to account for multiplicity (Wang and
Ramdas, 2022)

TL;DR: one can perform resolution-adaptive variable selection as a frequentist.
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Conclusion

BLiP is a powerful and efficient method for resolution-adaptive variable selection

Provable (Bayesian) error control and verifiable near-optimality

Substantial power gains in minutes on fine-mapping

Software packages pyblip (Python) and blipr (R)

More in the paper:

Applications to astronomy, change-point detection

Potential for other signal discovery problems with spatial structure?

Paper available at: https://arxiv.org/abs/2203.17208

All code posted at: https://github.com/amspector100/blip_sims/

Thank you!
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