# Controlled Discovery and Localization of Signals via Bayesian Linear Programming (BLiP)

Asher Spector

Stanford University, Department of Statistics



#### Lucas Janson (Harvard Statistics)

**Challenge**: Collinearity/correlations make it challenging to perform controlled variable selection.

- Often, we can tell that *some* variables influence the outcome Y, but we don't know which ones.
- Even after fitting a model, it's unclear how to *localize* which variables may affect *Y*.

This talk: Given a model, how can we "localize" signal variables?

- This talk is *not* about fitting the model!
- It is about extracting useful information from a pre-fit model.
- For this talk, I will assume the model is Bayesian.

**Empirically**: Increases power 20-50% on a large-scale GWAS with  $\leq 1$  min of added computation!

- 2 Methodology (BLiP)
- 3 Application to genetic fine-mapping
- Advertisement for KeLP: a frequentist, knockoffs-based method (Gablenz and Sabatti, 2024)



- 2 Methodology (BLiP)
- 3 Application to genetic fine-mapping
- Advertisement for KeLP: a frequentist, knockoffs-based method (Gablenz and Sabatti, 2024)
- 5 Conclusion

## Motivation I: genetic fine-mapping

UK Biobank dataset ( $n \approx 377,000$ ):

- Y is disease status
- $(X_1, \ldots, X_p)$  are genetic variants  $(p \approx 19,000,000)$
- Question: which features  $X_j$  influence Y? Which are "signals?"

For simplicity, let's temporarily assume a linear model:

$$Y = X^T \beta + \epsilon \text{ with } \mathbb{E}\left[\epsilon \mid X\right] = 0$$

Challenge:

- $(X_1, \ldots, X_p)$  exhibit strong local correlations, e.g.,  $Cor(X_1, X_2) = 0.999$
- $\bullet\,$  We may have no power to detect that  $\beta_1 \neq 0$
- But, maybe we know  $(X_1, X_2)$  contains a signal, i.e.,  $\beta_{1,2} \neq 0!$

### Motivation in a picture



Figure: Cartoon Manhattan plot of genome; y-axis shows a measure of  $Corr(Y, X_j)$  for j = 1, ..., 100.

### Motivation in a picture



Figure: Cartoon Manhattan plot of genome; y-axis shows a measure of  $Corr(Y, X_j)$  for j = 1, ..., 100.

If you fit a linear model, you might find that nothing is significant!

## Motivation II: exploratory analysis of clinical trials

Correlated features appear in exploratory analysis of clinical trials:

- Proteomic/genomic data, even demographic data (age, baselines, etc)
- Throughout, think of X as a generic set of features (could include treatments/interaction terms)



**Moral**: for small to medium n, moderate correlations make it harder to identify treatment effect moderators / prognostic variables.

#### Goals:

- Discover disjoint groups  $G_1, \ldots, G_R \subset \{1, \ldots, p\}$  which each contain a signal
- Make R large and  $G_1, \ldots, G_R$  small—both matter a lot!
- Control (e.g.) the FDR

Method: Bayesian Linear Programming (BLiP).

Input: posterior samples from any Bayesian model (e.g. Bayesian GLM/GAM)

*Output*: groups  $G_1, \ldots, G_R$  that maximize power subject to FDR control.\*

\* FDR control assumes the Bayesian model is well-specified.

## Contribution in a picture

**Input**: Samples from sparse Bayesian linear model. **Output**:



Figure: Cartoon of partial Manhattan plot of genome

### 2 Methodology (BLiP)

- 3 Application to genetic fine-mapping
- Advertisement for KeLP: a frequentist, knockoffs-based method (Gablenz and Sabatti, 2024)

### 5 Conclusion

**Notation**:  $X \in \mathbb{R}^p$  are features,  $Y \in \mathbb{R}$  is an outcome,  $\mathcal{D}$  is dataset. **Assumption 1**: The analyst specifies a Bayesian model which implies

$$\mathbb{E}\left[Y \mid X\right] = f_{\theta}(X) \text{ for } \theta \in \Theta$$

with  $\theta \sim \pi$  sampled from some prior distribution.

•  $S = \{j : f_{\theta}(X) \text{ depends on } X_j\} \subset [p] \text{ is the set of signal variables.}$ 

**Assumption 2**: The analyst can sample from the law of  $\theta \mid \mathcal{D}$ .

- These assumptions are not always reasonable! (see Section 5)
- But there is an enormous literature on sampling from these models
- Our question: how do we extract useful insights from these models after fitting them?

## Problem statement (I)

#### Goal:

- Discover disjoint groups  $G_1, \ldots, G_R \subset \{1, \ldots, p\}$  which each contain a signal
- Make R large and  $G_1, \ldots, G_R$  small—both matter a lot!
- Control the (Bayesian) FDR

**Emphasis**: we want to pick  $G_1, \ldots, G_R$  after seeing the data. E.g.:



How to group the features depends on the (unknown) signal size!

Don't want to narrow potential discovery regions until *after* seeing data Goal: look at the data and outputs regions  $G_1, \ldots, G_R$  so as to:

$$\begin{aligned} \max & & \mathbb{E}\left[\mathsf{Power}(G_1, \dots, G_R) \mid \mathsf{Data}\right] \\ \text{s.t.} & & \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1, R)} \mid \mathsf{Data}\right] \leq q, \\ & & G_1, \dots, G_R \subset [p] \text{ are disjoint.} \end{aligned}$$

What does high Power() look like?

- As many (true) discovered regions  $G_r$  as possible
- Discovered regions  $G_r$  should be as small as possible

Existing work: no formalization of what "power" means, so cannot optimize it.

## Defining resolution-adjusted power

Define a weighting function  $w({\boldsymbol{G}})$  that measures value of discovering a group

- Should penalize larger groups
- Canonical choice is inverse-size weighting: w(G) = 1/|G|
- Sum weights of true rejections to get Power():

$$\mathsf{Power}(G_1,\ldots,G_R) = \sum_{r=1}^R I_{G_r} w(G_r),$$

where  $I_G = \mathbb{I}(G \cap S \neq \emptyset)$  is the indicator that G contains a signal (i.e., is a true discovery)

Remarks:

- $\bullet\,$  Different w can accommodate very different scientific objections
- In practice, do we exactly know our "utility function"?
- We will see that the results are not too sensitive to precise specification

## Method: Bayesian Linear Programming (I)

Method: directly solve the optimization problem:

$$\begin{array}{ll} \max & & \mathbb{E}\left[\mathsf{Power}(G_1,\ldots,G_R) \mid \mathsf{Data}\right] \\ \text{s.t.} & & \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1,R)} \mid \mathsf{Data}\right] \leq q, \\ & & G_1,\ldots,G_R \subset [p] \text{ are disjoint.} \end{array}$$

Key observation: the power of a Bayesian method that discovers  $G_1,\ldots,G_R$  is

$$\mathbb{E}[\mathsf{Power}(G_1, \dots, G_R) \mid \mathsf{Data}] = \mathbb{E}\left[\sum_{r=1}^R I_{G_r} w(G_r) \mid \mathsf{Data}\right] = \sum_{G \subseteq [p]} p_G w(G) z_G,$$

•  $p_G = P(G \text{ contains a signal } | \text{ Data})$  can be computed Assumptions 1-2 •  $z_G \in \{0, 1\}$  is indicator that we discover G

## Method: Bayesian Linear Programming (II)

**Theorem**: the optimization problem is equivalent the following integer LP:

$$\begin{array}{ll} \displaystyle \max_{\{z_G\}_{G \subseteq [p]}} & \displaystyle \sum_G p_G w(G) z_G & (\mathsf{Power}) \\ & \text{s.t.} & \displaystyle \sum_G (1 - p_G - q) z_G \leq 0 & (\mathsf{FDR}) \\ & \displaystyle \sum_{G \subset [p]: j \in G} z_G \leq 1 & \forall j = 1, \dots, p \ \text{(disjoint discoveries)} \end{array}$$

for decision variables  $z_G \in \{0, 1\}$ .

This is progress. Yet we have  $2^p$  integer decision variables.

## Method: Bayesian Linear Programming (III)

**Problem**:  $2^p$  integer decision variables.

Solutions:

Narrow the search space after looking at the data

Sublinear algorithm to discard {G : p<sub>G</sub> ≤ 0.001}

Over the search space by imposing desirable structural constraints

 $\bullet~{\rm E.g.,~ensure}~|G|\leq 25$ 

If needed, solve the continuous relaxed LP; then round to obtain integers.

Result: Provable FDR control, verifiable near-optimality.



Figure: Expected power (BLiP) vs. upper bound

## Putting it all together: BLiP

**Input**: Nearly any Bayesian model (via MCMC, variational inference) and any desired structural constraints on the discovery set

**Output**: disjoint discoveries which (1) verifiably nearly maximize power and (2) control the FDR.



Figure: p denotes dimension of linear model being fit, with n = p/2

- 2 Methodology (BLiP)
- 3 Application to genetic fine-mapping
  - Advertisement for KeLP: a frequentist, knockoffs-based method (Gablenz and Sabatti, 2024)

#### 5 Conclusion

**Dataset**:  $n \approx 337,000$ ,  $p \approx 19,000,000$ , four traits of interest.

Bayesian model: SuSiE (Wang et al., 2020)

SuSiE is a sparse Bayesian linear model that can be fit highly efficiently.

**2** Like BLiP, SuSiE returns regions  $G_1^{SuSiE}, \ldots, G_R^{SuSiE}$  of the genome.

O However, SuSiE's regions are constructed heuristically.

• Can we do better using a principled approach (BLiP)?

We run BLiP on top of a pre-fit SuSiE model from Weissbrod et al. (2019).

## Fine-mapping results

UK Biobank data:  $n \approx 337,000$ ,  $p \approx 19,000,000$ ; BLiP takes  $\leq 1 \text{ min}$  per trait



#### Cumulative Frequency of Discovered Group Sizes



| Trait          | Corroboration Rate (SuSiE) | Corroboration Rate ( <i>new</i> ) |
|----------------|----------------------------|-----------------------------------|
| Height         | 53.5%                      | 45.0%                             |
| HDL            | 57.0%                      | 50.0%                             |
| LDL            | 67.3%                      | 60.0%                             |
| Cardiovascular | 82.2%                      | 65.2%                             |

Table: The proportion of discoveries which can be corroborated by a separate study in the NHGRI-EBI GWAS Catalog (Buniello et al., 2018).

Note the right-hand column only contains entirely new discoveries made by BLiP.

**Our interpretation**: this is a positive result, since all of the "low-hanging fruit" should lie in the left-hand column. Nonetheless, the numbers are comparable.

- 2 Methodology (BLiP)
- 3 Application to genetic fine-mapping

 Advertisement for KeLP: a frequentist, knockoffs-based method (Gablenz and Sabatti, 2024)

5 Conclusion

A weakness: BLiP assumes the Bayesian model is well-specified.

Gablenz and Sabatti (2024) also solve the BLiP optimization problem...

• ...but obtain model-free frequentist FDR guarantees.

Insights:

- Use knockoffs for model-free error control (Candes et al., 2018)
- Technical insight: use e-values to account for multiplicity (Wang and Ramdas, 2022)

TL;DR: one can perform resolution-adaptive variable selection as a frequentist.

- 2 Methodology (BLiP)
- 3 Application to genetic fine-mapping

 Advertisement for KeLP: a frequentist, knockoffs-based method (Gablenz and Sabatti, 2024)



BLiP is a powerful and efficient method for resolution-adaptive variable selection

- Provable (Bayesian) error control and verifiable near-optimality
- Substantial power gains in minutes on fine-mapping
- Software packages pyblip (Python) and blipr (R)

More in the paper:

- Applications to astronomy, change-point detection
- Potential for other signal discovery problems with spatial structure?

Paper available at: https://arxiv.org/abs/2203.17208

All code posted at: https://github.com/amspector100/blip\_sims/

Thank you!

### References

- Blum, J., Winikoff, B., Raghavan, S., Dabash, R., Ramadan, M. C., Dilbaz, B., Dao, B., Durocher, J., Yalvac, S., Diop, A., Dzuba, I. G., and Ngoc, N. T. N. (2010). Treatment of post-partum haemorrhage with sublingual misoprostol versus oxytocin in women receiving prophylactic oxytocin: a double-blind, randomised, non-inferiority trial. *Lancet*, 375(9710):217–223.
  Buniello, A., MacArthur, J. A., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., McMahon, A., Morales, J., Mountjoy, E., Sollis, E., Suveges, D. Muster, D. Muster, D. M. (2010).
- D., Vrousgou, O., Whetzel, P. L., Amode, R., Guillen, J. A., Riat, H. S., Trevanion, S. J., Hall, P., Junkins, H., Flicek, P., Burdett, T., Hindorff, L. A., Cunningham, F., and Parkinson, H. (2018). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. *Nucleic Acids Research*, 47(D1):D1005–D1012.
- Candes, E., Fan, Y., Janson, L., and Lv, J. (2018). Panning for gold: Model-X knockoffs for high-dimensional controlled variable selection. *Journal of the Royal Statistical Society: Series B*, 80(3):551–577.
- Gablenz, P. and Sabatti, C. (2024). Catch me if you can: signal localization with knockoff e-values. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, page qkae042.

Siedner, M. J., Bwana, M. B., Moosa, M.-Y. S., Paul, M., Pillay, S., McCluskey,