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It is well known that both the direction and magnitude of the treatment effect in clinical trials are often affected
by baseline patient characteristics (generally referred to as biomarkers). Characterization of treatment effect
heterogeneity plays a central role in the field of personalized medicine and facilitates the development of tailored
therapies. This tutorial focuses on a general class of problems arising in data-driven subgroup analysis, namely,
identification of biomarkers with strong predictive properties and patient subgroups with desirable character-
istics such as improved benefit and/or safety. Limitations of ad-hoc approaches to biomarker exploration and
subgroup identification in clinical trials are discussed, and the ad-hoc approaches are contrasted with principled
approaches to exploratory subgroup analysis based on recent advances in machine learning and data mining.
A general framework for evaluating predictive biomarkers and identification of associated subgroups is intro-
duced. The tutorial provides a review of a broad class of statistical methods used in subgroup discovery. including
global outcome modeling methods, global treatment effect modeling methods, optimal treatment regimes, and
local modeling methods. Commonly used subgroup identification methods are illustrated using two case studies
based on clinical trials with binary and survival endpoints. Copyright © 2016 John Wiley & Sons, Ltd.
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In this paper, we review recent ad in statistical methods for th luation
of the heterogeneity of treatment effects (HTE), including subgroup identifi-
cation and estimation of individualized treatment regi from randomized

clinical trials and observational studies. We identify several types of approaches
using the features introduced in Lipkovich et al (Stat Med 2017;36: 136-196)
that distinguish the ded principled methods from basic methods for
HTE evaluation that typically rely on rules of thumb and general guidelines (the
methods are often referred to as common practices). We discuss the advantages
and disadvantages of various principled methods as well as common mea-

sures for ing their perfi ‘We use simulated data and a case study
based on a historical clinical trial to illustrate several new approaches to HTE

evaluation.
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Learning heterogeneity of TE from the data

CATE (x) = A(x) = E(Y(D)|X = x) — E(Y(0)|X = x)

Causal
inference

Post-selection inference

VP vuttiple

hypothesis
testing

X - possibly high dimensional

\ETIIGIE
learning

CATE: Conditional Average Treatment Effect (a.k.a ITE)



The set up: individual TE

Each patient has two potential outcomes of Y, i.e. Y;(0),Y;(1)
correspondingto T = 0,1; only one outcome is observed (SUTVA)

Outcome function, given pre-treatment covariates
m;(x) = E(Y;(t)|X = x),t € {0,1}

Under treatment ignorability, ensured by randomization in RCT, or “no
unmeasured confounder” assumption in OC

m;(x) =E(Y|T =t,X =x)
Treatment contrast or conditional causal effect (CATE)
A(x) =m(1,x) —m(0,x)

In studies with non-randomized treatments, we need to estimate
propensity scores

n(x) =P(T =1|X =x)



Literature on subgroup identification is diverse

ORIGINAL ARTICLE

Selecting Optimal Subgroups for Treatment Using

Many Covariates

Tvler J. VanderWeele,* Alex R. Luedtke,* Mark J. van der Laan,® and Ronald C. Kessler?
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Abstract: We consider the problem of selecting the optimal subgroup
to treat when data on covariates are available from a randomized trial
or observational study. We distinguish between four different settings
including: (1) treatment selection when resources are constrained: (2)
treatment selection when resources are not constrained; (3) treatment
selection in the presence of side effects and costs; and (4) treatment se-
lection to maximize effect heterogeneity. We show that, in each of these
cases, the optimal treatment selection rule involves treating those for
whom the predicted mean difference in outcomes comparing those with
versus without treatment, conditional on covariates, exceeds a certain
threshold. The threshold varies across these four scenarios, but the form
of the optimal freatment selection rule does not. The resulfs Suggest a
move away from the traditional

icine. New randomized trial designs are proposed so as to implement
and make use of optimal treatment selection rules in healthcare practice.
Keywords: Effect modification; Interaction; Optimal treatment se-
lection; Precision medicine; Personalized treatment; Randomized
trial; Subgroup

(Epidemiology 2019;30: 334-341)

S(x) = {x: A(x) > &}
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CAPITAL: Optimal Subgroup Identification

via Constrained Policy Tree Search

Hengrui Cai* !, Wenbin Luf!, Rachel Marcean West!Z2,
Devan V. Mehrotra®?, and Lingkang Huang1?

IDepartment of Statistics, North Carolina State University
*Biostatistics and Research Decision Sciences, Merck & Co., Ine.

Abstract

Personalized medicine, a paradigm of medicine tailored to a patient’s character-
istics, is an inereasingly attractive field in health care. An important goal of person-
alized medicine is to idemify a subgroup of patients, based on baseline covariates,
that benefits more from the targoted treatment than other comparative treatments
Most of the current subgroup identifieation methods only focus on obtaining a sub-
group with an enhaneed treatment effect without paying attention to subgroup size.
Yot, a clinically meaningful subgroup learning approach should identify the maxi-
mum number of patients who ean benefit from the better treatment. In this paper,
we present an optimal subgroup selection rule (SSR) that maximizes the number of
selocted patients, and in the meantime, achioves the pre-specified clinically meaning-
ful mean outeome, such as the average treatment effect. We derive two equivalent
theoretical forms of the optimal SSR based on the contrast function that deseribes the
treatment-covariates interaction in the outcome. We further propose a ConstrAined
Polley Tree seAreh algorithm {CAPITAL) to find the optimal SSR within the in-
terpretable decision tree class. The proposed method is flexible to handle multiple
constraints that penalize the inclusion of patients with negative treatment effeets, and
to address time to ovent data using the resiricted mean survival time as the clinically
interesting mean outcome. Extensive simulations, comparison studies, and real data
applications are conducted to demonstrate the validity and utility of our methed.
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Optimal subgroup selection

Henry W. 1. Reeve, Timothy I. Cannings and Richard J. Samworth
University of Bristol, University of Edinburgh
and University of Cambridge

Abstract

In clinical trials and other applications, we often see regions of the foature space
that appear to exhibit interesting behaviour, but it is unclear whether these observed
phenomena are reflected at the population level. Focusing on a regression setting, we
consider the subgroup selection challenge of identifying a region of the feature space
on which the regression function exceeds a pre-determined threshold. We formulate
the problem as one of constrained optimisation, where we seck a low-complexity, data-
dependent seloction set on which, with a guaranteed probahility, the regression function
is uniformly at least as large as the threshold; subject to this constraint, we would like
the region to contain as much mass under the marginal feature distribution as possible.
This leads to a natural notion of regret, and our main contribution is to determine the
minimax optimal rate for this regret in both the sample size and the Type I ferror
probability. The rate involves a delicate interplay between parameters that control the
smoothness of the regression function, as well as exponents that quantify the extent
to which the optimal selection set at the population level can be approximated by
families of well-behaved subsets. Finally, we expand the scope of our previous results
by illustrating how they may be generalised to a treatment and control setting, where
interest lies in the heterogeneous treatment effect.

the level 7 on B. (SRR
identify a finite union of hyper-cubes that satisfy our Type I error control property. Our

final selection set Agss maximises the empirical measure among all elements of A that lie

mthmth;sﬁmteuumofhypercubes
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Typology of Subgroup Identification; Lipkovich et al. (2017)
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ITE scores vs CATE learners

e Itis important to distinguish between estimators of CATE, A(x) (often
presented as meta-learners, coined by Kinzel et al) and an individual treatment

effect (ITE) score A; estlmated for a given subject in observed data

— A(x) predict A; for any subject by plugging-in their X;
— Computing scores A _require both X; and Y; for a given subject, they are consistent
estimators of ITE, E{A } = A; and are used as pseudo-outcomes to model CATE

* Examples of ITE scores
— Imputed/matched counterfactuals : /A\l;mp =T; (Yl- — Yi(O)) +(1-T) V(1) -Y)
Ti¥s _ Yil-To) overoptimistic hopes: no need to fit prognostic effects

n(x)  1-m(x) ]
_ CRAPW s cu N s oy o Lii-ma (X)) (AT (V=Moo (X))
AIPW score: A; =m,(X;) — my(X;) + s .

— Robinson’s transformation: AT°? = %, m(X;) = E(Y;|X;), motivated R-learning
i~ i

— IPW score: Zlipw =




HTE evaluation

What to look for in papers on
HTE?



Does it apply only to RCT or to OS as well?

* For observational data, there is an interplay between
confounders and modifiers of treatment effect (aka predictive
biomarkers), making model selection more challenging
— Confounders are predictive of both treatment T and outcome Y
— Effect modifies are predictive of CATE, A(x)



The number of predictors the procedure can handle

° p:l
— focus on selecting a cutoff for a single continuous biomarker (e.g.
STEPP method by Bonetti and Gelber; Han et al)

* p =10-20
* p =~100-1000
*p>n

— Feature space grows with sample size



Model complexity

* What is the complexity of the “model space” where the subgroups reside?
— Subgroups defined based on “black box” functions of covariates, S(x) =
{x:A(x) > c}
— Subgroups defined by simple biomarker signatures with up to 2 variables using a
tree search, S(x) = {x: X; < ¢, X3 > c3}
» Strategies often combine multiple steps and models. Fore example:

— Compute ITE scores: A; : Doubly robust score involving fitting outcome and
propensity model, imputation of counterfactuals, e.g, by matching on
propensity score or using ML, ...

— Fit a CART tree to Zi as the pseudo-outcomes, and prune the tree

* How is model complexity controlled to prevent data overfitting?

— Optimal tuning at each step does not guarantee optimal estimation of the targets
causal estmand.

12



What output does the method produce?

e Individualized treatment contrast, A(x)

* Biomarker signatures of promising subgroups
— S(x) = {x:X; < ¢y, X3 > 3}

* Optimal treatment assignment rule:
— D(x) = 1if A(x)> 8, otherwise D(x) = 0

* Predictive biomarkers (a.k.a. effect modifiers ordered) e.g. selected by
variable importance score.



What inference is done, if at all?

* Inference on presence of HTE: Hy: A(x)=A
* Inference on A(x)

* |Inference on subpopulations:
— Controlling the probability of selecting the right subgroup, S(x) vs Siye(x)

— Estimating “honest effect” in identified subgroup: E{Y(1) — Y(0)|S(x)}
* Inference on ITR
— Estimating the Value of ITR: V[ﬁ] =F {Y (5(X))} (Qian and Murphy)

* Inference on selection of predictive biomarkers
— E.g. controlling FDR via knockoffs (Sechidis et al.)

14



Inference on presence of HTE

* Best linear projection (BPL) of an ML proxy for CATE, Z(Xi) (Chernozhukov et al,
GenericML; Athey and Wager, grf)

Y, - m (X)) = al (Ti - ﬁ_i(Xi)) +p (Ti - ﬁ_i(Xi)) (A™'(x)) — 4)
— Use cross-fitted versions of outcome and propensity models

— [ >0 inidicates presence of heterogeneity of treatment effect

* GATE (Group ATE) testing (Chernozhukov et al; Imai and Li)

— Null hypothesis: E(A(X)|G,) ... = E(A(X)|Gk), where Gg are groups induced by a generic ML
method for estimating CATE.

— Imai and Li developed cross-validation (cross-fitting) framework to test the homogeneity
hypothesis (evalITR)

— They derived the asymptotic variance for the test statistics under cross-fitting framework for an
arbitrary ML algorithm for estimating CATE,

 Variation in CATE over covariate space, VTE = var{A(X)},

— Levy et al. developed a cross-validated TMLE estimator with simultaneous inference for ATE and
VTE

15



Inference on A(x)

* Pointwise Cl for A(x)

— based on post-selection inference from penalized regression, lasso with trt by
covariate interaction terms (Ballarini et al)

— based on causal random forests (Wager and Athey):

* combining the ideas of R learning (Nie and Wager motivated by Double ML of Chernozhukov
et al) with the inference for bagging and RF (Wager and Efron)

* Simultaneous confidence bands on A(x)
— by semi-parametric modeling, Guo at al.

— using nonparametric kernel estimators of CATE, Lee et al. proposed 2 stage
modeling:
» 1 stage: High dimensional modeling of nuisance functions to compute DR ITE scores, Zi

* 2 stage: Use a much smaller number of candidate effect-modifiers X, € X to model CATE by
regressing A; on X,.

* Bayesian approaches for inference on A(x)
— BART (Hill, bartCausal) and Bayesian causal forest (Hahn et al, bcf)

16



Inference on identified subgroups: what’s the right subgroup?

e Controlling the probability of selecting the right subgroups (Schnell et al)
— Strue(X) = {x:A(x) > 6}, eg.6=0
— Bayesian credible subsets, Pr(S;ower S Serue S Aupper) >1—a
— Bounding subgroups:
o Siower(X) = {x: Ajper (x) > 8}, exclusive set
. fupper(X) = {x: Zupper(x) > &}, inclusive set
— Siower (X) = @ implies lack of heterogeneity
* Placing a guarantee on a set of subjects suggests testing for positive treatment
effect at an individual patient level: Hy;: A; = 0 (Duan et al.)

— How do we interpret the collection of patients for whom we reject the null?
Generalizability?

17



Inference on subgroups: what’s effect within subgroup?

« Inference on treatment effect within identified subgroups, E (A(X)|S (X))

— Bayesian shrinkage and Bayesian Model Averaging

e Resampling methods:

— Correcting for overoptimism bias incurred by subgroup search with a ML algorithm.
Subgroups identified in the resampled set may be different from those on the original set

— Correcting for selection of the best subgroup within a pre-specified set of candidate
subgroups: e.g.: S(c) = {X < c} via bootstrap (Guo and He)

— Combining the two frameworks: debiased lasso + bootstrap adjustment (Guo at al.)
* Inference on data-driven subgroups without resampling or a test data?
— Subgroup search on the full sample while masking some aspects of the data

— e.g. tree-based search based on squared ITE scores, Zf while using the known distribution
of the sign (Zi) under null for controlling Type 1 error/FDR. (Hsu et al; Karmakar et al)

18



Inference on ITR

* Estimating value of V[ﬁ] = E{Y(D(X))}is a challenging and irregular problem,
even for a single stage ITR
— Important distinction: inference for the value of estimated ITR, V|D] vs. inference for

the value of true/optimal ITR, V[Dopt]

— TMLE estimator for the “Mean under Dynamic Treatment Regimen” by van der Laan et al.
Inference is based on cross-fitted Efficient Influence Curves,

— provides a guarantee that their 95% ClI for the Value function covers the true V[Dopt]

* The cross-validation (cross-fitting) framework for estimating Population
Average Prescriptive Effect (PAPE) from randomized trials (Imai and Li)

— PAPE contrasts the value of a regimen under budget constraint p with the benchmark
of the value under randomly assigning p% patients to active treatment.

PAPE(p) = E{Y (D,(0))} = E(pY (1) + (1 — p)Y(0)},

— D,(X) = I(A(X) > 8(p) ), 6(p) is calibrated to ensure the budget constraint p (p =proportion
treated) is met, and no patient is harmed, §(p) = 0.

19



Software for subgroup identification

* http://biopharmnet.com/subgroup-analysis-software/

Software for subgroup identification
SIDES method

R package SIDES implementing the regular SIDES method (Subgroup Identification
Based on Differential Effect Search) based on Lipkovich et al. (2011) flast update: October
04, 2016]. The package is maintained by Marie-Karelle Riviere (eldamjh@gmail.com)

Download the SIDESx! package (an Excel add-in) which implements the regular SIDES
and SIDEScreen methods [last update: March 25, 2016). The package is maintained by
llya Lipkovich (ilyalipkovich@gmail com).

Download the R functions, C++ functions (sides64.dll), and examples for the regular
SIDES (Lipkovich et al, 2011), SIDEScreen (Lipkovich and Dmitrienko, 2014), and
Stochastic SIDEScreen (Lipkovich et al, 2017) methods [last update: October 01, 2018]
The functions and examples are provided by llya Lipkovich (ilya.lipkovich@gmail.com),

Alex Dmitrienko and Bohdana Ratitch.

Interaction Trees method

Download the R functions and examples for the Interaction Trees method [last update:
Dec 30, 2014]. The functions and examples are provided by Xiaogang Su (Xiaogang Su's
site). Download the R code for the Interaction Trees method [last update: Dec 30, 2014].

Virtual Twins method

Download the R code for the Virtual Twins method [last update: Dec 30, 2014]. The code
is provided by Jared Foster (jaredcf@umich.edu).

R package aVirtualTwins that implements an adaptation of the Virtual Twins method by
Foster et al. (2011)

GUIDE method

GUIDE package for dlassification and regression trees now includes methods for
subgroup identification. The GUIDE package is maintained by Wei-Yin Loh (Wei-Yin Loh's
site). For more information on the subgroup identification features, see Section 5.10 of
the GUIDE User Manual [last update: September 25, 2018] and paper by Wei-Yin Loh, Xu
He and Michael Man.

In addition, MrSGUIDE package implements the GUIDE method for randomized trials

and observational studies.

QUINT method

Quint package for QUalitative INteraction Trees. The package is maintained by Elise
Dusseldorp (Elise Dusseldorp's site) and colleagues. Reference: Dusseldorp and

Mechelen (2014)

FindIt method

Findit package for finding heterogeneous treatment effects [last update: February 27,
2015]. Reference: Imai and Ratkovic (2013).

Blasso method

Download the R functions for the Bayesian two-stage Lasso strategy for biomarker
selection for time-to-event endpoints [last update: December 16, 2014]. The code is

provided by Xuemin Gu (xuemin.gu@bms.com). Reference: Gu, Yin and Lee (2013).

ROWSi method

Download the R code for the ROWSi method (Regularized Outcome Weighted Subgrouy
identification). Reference: Yu et al. (2015).

Model-based Recursive Partitioning

R partykit package: A Toolkit for Recursive Partytioning, which can perferm subgroup

analyses using the functions Imtree(), glmtree() (or mere generally, mob()) and ctree()).
Recently a new package model4you has been created that specializes on stratified and
personalized treatment effect estimation. The package is maintained by Heidi Seibold

(heidi@seibold.co).

See examples of subgroup analysis in Seibold et al. (2015) and Seibold et al. (2016)

Other packages

R package personalized (maintained by Jared Huling) for subgroup identification and
estimation of heterogeneous treatment effects. It is a general framework that
encompasses a wide range of methods including ROWSi, outcome weighted learning,
and many others. See documentation and article explaining the underlying

methodology.

R package SubgrD implements several algorithms for developing threshold-based
multivariate (prognostic/predictive) biomarker signatures via bootstrapping and
aggregating of thresholds from trees (BATTing), Monte-Carlo variations of the Adaptive
Indexing Method (AIM) by Huang X. et al. (2017) and and adaptation of Patient Rule
Induction Method (PRIM) for subgroup identification by Chen G. et al. (2015)

Fu, Zhou and Faries (2016) developed a search approach that provides simple and
interpretable rules defining subgroup of patients with maximizes average patients’
benefit for different treatments within a general framework of outcome weighted

learning (OWL). Here you can find the C++ implementation.

R package DynTxRegime implements methods to estimate dynamic treatment regimes
using Interactive Q-Learning, Q- Learning, weighted learning, and value-search methods
based on Augmented Inverse Probability Weighted Estimators and Inverse Probability

Weighted Estimators.

R package listdtr constructs list-based rules (lists of if-then clauses) to estimate the

optimal dynamic treatment regime based on the approach by Zhang et al. (2016).

The subtee R package implements method for bootstrap-corrected estimation after
subgroup selection described in Rosenkranz (2016) and a model averaging approach

from Bornkamp et al. (2018).

TSDT: Treatment-Specific Subgroup Detection Tool by Chakib Battioui, Brian Denton and
Lei Shen (2018).

StratifiedMedicine by Thomas Jemielita is a broad toolkit for subgroup identification and
stratified/precision medicine. The package also includes a novel algorithm PRISM
(Patient Response Identifiers for Stratified Medicine) by Jemielita and Mehrotra (to

appear).

Generalized Random Forests (grf) is a package for forest-based statistical estimation and
inference. The package currently provides methods for non-parametric least-squares
regression, quantile regression, survival regression and treatment effect estimation

(optionally using instrumental variables), with support for missing values.

Policy learning via doubly robust empirical welfare maximization over trees (policytree)
supports optimal policies via doubly robust empirical welfare maximization over trees.

This package implements the multi-action doubly robust approach of Zhou, Athey and
Wager (2018)

R package (debiased.subgroup) implements bootstrap-assisted desparsified Lasso and
bootstrap-assisted R-split estimators on selected subgroup’s treatment effect estimation.
The implemented estimators remove the subgroup selection bias and the regularization
bias induced by high-dimensional covariates. For more information, see Guo, Wei, Wu
and Wang (2021)

R package (rlearner) supports quasi-oracle estimation of ¢

effects based on Nie and Wager (2021).

treatment

R package (causalToolBox) s available to enable metaleamers for estimating
heterogeneous treatment effects using machine learning based on Kiinzel, Sekhona
Bickel and Yu (2019)

R code (CAPITAL) for the implementation of optimal subgroup identification via

constrained policy tree search based on Cai, Lu, West, Mehrotra and Huang (2021).

R package (bcf) supports causal inference for a binary treatment and continuous

outcome using Bayesian causal forests based on Hahn, Murray and Carvalho (2019).

20


http://biopharmnet.com/subgroup-analysis-software/

e A shift from ad-hoc “subgroup chasing” methods towards principled
methods of personalized/precision medicine utilizing ideas from
causal inference, machine learning and multiple testing emerged in
last 10 years producing a vast number of diverse approaches

* For naive multistage methods (requiring fitting response surface
m(t, x)) regularization bias can be large, as each step is optimized for
prediction, rather than for the final estimation target. Doubly robust
strategies for CATE are preferred.

* Post-selectin inference on HTE is challenging. We reviewed some
recent methods, mostly within frequentist domain
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