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Application: Risk group estimation

Background: In a Phase 2 study, about 250 patients received a new drug with varying dose. Some
patients faced adverse events (AE). Can we predict which patients are at risk of AEs?

Application of subgroup selection: we set Y; := 1{patient ¢ does not report AE}, turning this into a
classification setting.

A then only contains covariate configurations with probability of not observing an AE exceeding 7.

E.g. 7=0.95 and o = 0.05.
Decision process once we have computed A and observe a new patient with covariate values X:
o If X € A: patient can be expected to not face AEs since n(X) > 7 (with probability 1 — «).

o If X & A: patient might need further attention.
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Statistical setting

Assumptions: R2

(7) the regression function n(x) := E(Y|X = x) is increasing
on RY, ie. xog < x1 = n(xo) < n(w1),

(1) Y — n(X) | X = z is either homoskedastic Gaussian,
bounded with known bounds or sub-Gaussian
with known variance parameter o2 for x € R?.

Alternative settings: "

Holder-smoothness of  (Reeve et al., 2023), Generalized Lin- .
ear Models (GLMs) (Wan et al., 2024). .
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Multiple testing procedure

Key idea: logical relationships of hypotheses Hy(X;), ¢ € {1,...,m}, induce a directed acyclic graph
(DAG). We combine the sequential rejection principle (Goeman and Solari, 2010) with careful a-
budget allocation to construct a procedure similar to Bretz et al. (2009).

Here: o = 0.05. The procedure terminates with R, = {1, 5,6, 7}.
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High-level strategy

For g € R, define null hypothesis Hy(zg) : n(zg) < 7.

High-level strategy:

1. Subsample m covariate vectors Xq,...,.X,, with m < n;
2. Calculate p-values p; for Hy(X;), 1 € {1,...,m};
3. Apply a multiple testing procedure with FWER-control to reject R, C {1,...,m};

4. Output A= {1 c R?: X, < x for some ¢ € Rat
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Theoretical guarantees

Write A'S for the resulting selected subgroup.

Theorem. Forany n > 1, m <n, a € (0,1), o > 0, we have:

P(VEGAISS:n(m)ZT‘Xl,...,X,n) >1-—aq.

Note: this still holds if there are certain violations of monotonicity and this guarantee en-
sures we are robust against covariate-shifts.

Theorem. A™S is minimax optimal (in terms of power) across a natural subclass of distri-
butions in the sub-Gaussian setting.
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Application I: Risk group estimation

Background: In a Phase 2 study, about 250 patients received a new drug with varying dose. Some
patients faced adverse events (AE). Can we predict which patients are at risk of AEs?

Application of subgroup selection: we set Y; := 1{patient ¢ does not report AE}, turning this into a
classification setting.

A then only contains covariate configurations with probability of not observing an AE exceeding 7.

E.g. 7=0.95 and a = 0.05.
Decision process once we have computed A and observe a new patient with covariate values X:
o If X € A: patient can be expected to not face AEs since n(X) > 7 (with probability 1 — ).

o If X & A: patient might need further attention.
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Using the R package synthpop (Nowok et al., 2016) we sample from the covariate distribution
of the study. We then sample the responses according to the probabilities given by the fol-
lowing functions, which are also motivated by the real data:
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The threshold 7 € [0, 1] is chosen such that roughly 50% of patients fall into the subgroup
defined by it.
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We compare ISS to the parametric method that assumes a GLM by Wan et al. (2024).
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Application II: Treatment effects

Background: We use the package R package benchtm (Sun et al., 2024) designed specifically to simu-
late data inspired by clinical trials with treatment effect heterogeneity.

Estimand: We let Y (1) be the potential outcome under treatment and Y (0) the potential outcome
under control. Then, the conditional average treatment effect (CATE) is given by:

CATE(z) :=E(Y(1) - Y(0)|X = z).
Subgroup selection: Given an efficacy threshold 7, identify patients with CATE of at least 7.

Difficulty: For patient i, we observe Y;(1) if they have been assigned to treatment (7; = 1) or Y;(0) if
they have been assigned to control (7; = 0), but never both.

Solution: We use the double-robust learning approach to generate pseudo-observations mimicking

Yi(1) — Y;(0) (Kennedy, 2023).
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This package provides realistic covariate distributions and responses distributed standard-

normally around gg(z) in the control arm and around go(z) + CAT E(z) in the treatment
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(4) 32) — z8) Bo + B11{z® > 0.3 or z(®) = “v} —> ‘Or’-condition
T (x(l)j . jx(ﬁ)) denotes 6 different covariates and ® the standard normal CDF. go(z) is

given up to constant factors and [y, 81 € R (differing from row to row).
We aim to select the subgroup based on predictive covariates and consider cases. . .
e ...where Y;(1) — Y;(0), i € {1,...,n}, are observed (as reference point).

e ... where we have to use pseudo-observations.
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Extensions in the paper

e Adaptation to unknown variance of Gaussian errors.
e Bounded responses such as in classification.

e Heavy tails through isotonic quantile regression.

e Extensive simulations and turther applications.

e R-package ISS on CRAN.
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Take-home messages

Subgroup selection with strong Type I error guarantees is possible
in the 1sotonic regression setting.

Our procedure s computationally feasible and minimazx-optimal up
to poly-logarithmic factors.

In common situations, no smoothing-parameters have to be
specified.
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Consider adaptation to 0% when Y — n(X)|X ~ N(0,0?).

Key idea: use an online split likelihood ratio test (Wasserman et al., 2020) for
Hy : }Qk)|X(k) ~ N(t;{;,gz)jtk < 7 = 0. Yk = 1

Definition. Let 63, := %Z?Zl (Y — 'r)2 and Y7 = %Zf Y for k € [n(x)] and

gl = Eijl (Y5 — 171,;%)2 for k € {2,...,n(x)}. Denote Y1 := 0, and 62 = 1lfor
k € {0,1}. For k € [n(x)], define

-~ 2
R 1 Y = X1 1
pelz) = S — HJU 1eXp{( (4) =k ) },,
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where pr(z) := 1 if 69, = 0, and P, (z) := 1 A mingepy(a) Pr(2)-

Lemma. When n(z) < 7, we have P{p.(z) < t|Dx} <t for all ¢t € (0,1).
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Extension II: Classification

Suppose (X,Y) ~ P for some distribution P on R? x [0, 1] with increasing regression func-
tion.

Consider the likelihood ratio martingale test for Hy : n(xg) = 7 against Hy : n(xg) = t mixed
uniformly over ¢ € |7, 1].

Definition. Let S} := Z?zl Y(;) and define

’TS"I“ (1 - ,T)TL—S';C—I—I

) = 1A il - - :
pr(z) keln(x)] B(1—7;n— S+ 1,5 + 1)

where for z € [0,1] and a,b > 0, we write B(z;a,b) := foz to=1(1 — t)*~1 dt for the incomplete
beta function.




Extension II: Classification

Suppose (X,Y) ~ P for some distribution P on R? x [0, 1] with increasing regression func-
tion.

Consider the likelihood ratio martingale test for Hy : n(xg) = 7 against Hy : n(xg) = t mixed
uniformly over t € |7, 1].

Definition. Let S} := Z?zl Y(;) and define

S,Ig (1 L T)H—S';c—l—l

- tx) =1 /A ‘min
pr(@) k€n(x)] B(1 =730 — S+ 1,5, + 1)’

where for z € [0,1] and a,b > 0, we write B(z;a,b) := foz to=1(1 — t)*~1 dt for the incomplete
beta function.

Lemma. If 7 € [0,1), n(z) < 7, then P{p,(z) <t|Dx} <t for ¢t € (0,1).




Simulations

We conduct a simulation study to compare with other choices of multiple testing procedure.
We take g = Unif([0,1]%), Y — n(X)|X ~ N(0,0%) and our regression functions 7 are ob-
tained by rescaling f to [0, 1] on [0, 1]%:
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We conduct a simulation study to compare with other choices of multiple testing procedure.
We take p = Unif([0,1]%), ¥ — n(X)|X ~ N(0,0?) and our regression functions 7 are ob-
tained by rescaling f to [0,1] on [0, 1]%:

Label Function f 7 v(P)
(a) Z?:l i) | 1/2 1
(b) maxi<;<d $(J) 1/21/d 1
(c) min; <j<q x) 1 — 1/ 1
(d) ﬂ(0.5,1].(37(1)) . 1/2 0
(e) | 5, (2 —0.5) 1/2 3
() z(1) 1/2 1




Simulations

We conduct a simulation study to compare with other choices of multiple testing procedure.

We take g = Unif([0,1]%), Y — n(X)|X ~ N(0,0%) and our regression functions 7 are ob-

tained by rescaling f to [0, 1] on [0, 1]%:

Label Function f T v(P)
(a) i1 29 1/2 1
b maxi<;<gxW 1/21/4d 1
(b) <j<
& Miny << g Y 1 —1/2/4 1
(c) <j<
(d) 1(0.5,1] (") . 1/2 0
e ¢ (29 —0.5 1/2 3
(e) | 25
(f) z(1) 1/2 1

(a)

Estimate

01101

.05

Here, d=2, o0 =1/4.
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See also Meijer and Goeman (2015).
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