Evaluating the use of GPT-4 in Health Economics and Market Access Projects.

Johnson&Johnson MedTech

Agenda

- An AI-enhanced SLR case study
- An Internal JnJ AI-value brief POC
- Our Thoughts

Assessing Generative AI's capability in Systematic Literature Reviews (SLRs), a case study.

Nikolaos Takatzoglou

External PhD Candidate Erasmus School of Health Policy & Management

EMEA HEMA WC & Healing Lead & HEMA Lead Greece & Cyprus, Johnson & Johnson

Maureen Rutten-van Mölken

Prof. of Economic Evaluation of Innovations for Health Erasmus School of Health Policy & Management

Mike Kukushkin

Former External Consultant of JNJ

Cindy Tong

Director, EMEA RWE & Global VBHC Analytics

Johnson & Johnson

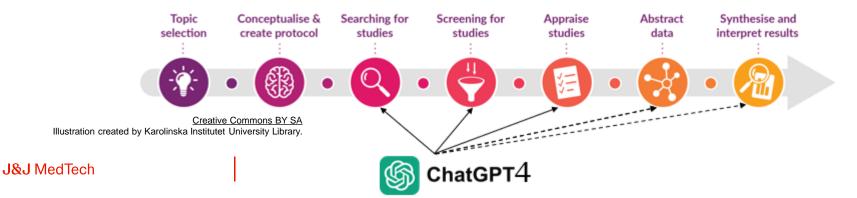
Ken Redekop

Associate Professor of Health Technology Assessment Erasmus School of Health Policy & Management

Gautam lyer

HEMA Intern

Johnson & Johnson


J&J MedTech

Two-Fold Research Scope

• Identify publications that predict the HTA outcomes and corresponding drivers; these publications will be used as features in an HTA ML prediction model we are developing.

• Can Generative-AI, such as GPT4, help with SLR?

Steps in a systematic review

Search Strategy

Humans chose databases (Pubmed, Scopus, Embase, Arxiv, iHTA, ISPOR)

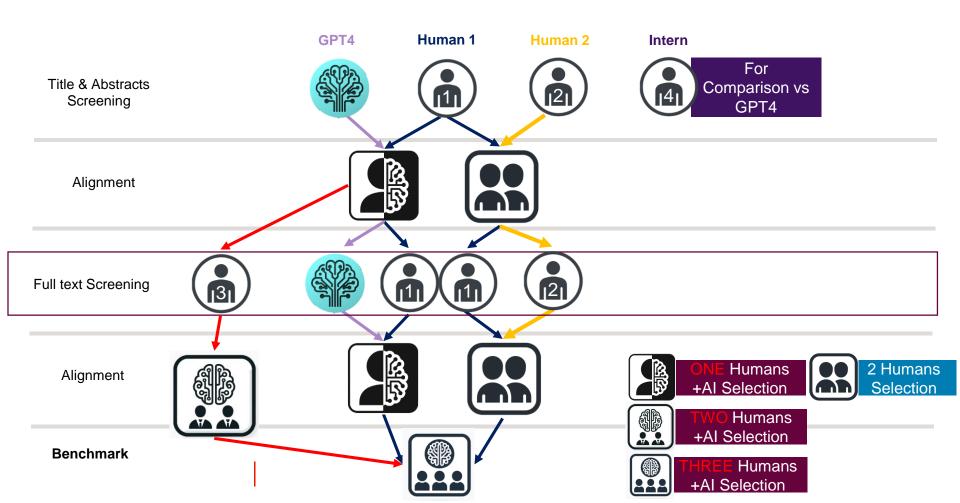
Humans devised search terms

GPT4 suggested additional search terms

humans accepted many of the additions

Human(s)
Robot
Human + Robot

Screening Phase



2406 Title & Abstracts (T&A) were retrieved manually

2406 T&A = 972 pages split in 1500 words chunks = 440 prompts (iterations) using the prompting "Secret Sauce"

Human(s)
Robot
Human + Robot

Instructions for AI

inspired by Tree of Thoughts, Chain of thought and self-Consistency methods¹

Four-PERSONAS: HTA Expert, Librarian (SLR expert), Statistician, DS/ML Expert

II. EXECUTION PHASE

J&J MedTech

PLANNING PHASE

- 1. Each persona reads
 - I. the input [1500-word chunk]
 - II. "Chief Scientist's" 3 Inclusion and 2 exclusion criteria

To be included studies:

- Studies that have used statistics or Machine Learning to
 - Predict HTA decisions.
 - Identify features/drivers of HTA decisions
 - Compare HTA decisions of different HTA bodies

To NOT be included studies / Irrelevant studies:

studies that discuss about /report HTA decision(s) but do not focus on showing the prediction or the drivers of that HTA decision

 studies that discuss about the HTA outcome of a specific intervention; this is too narrow of a scope to be included in our SLR 1. Yao, Shunyu, et al. "Tree of Thoughts: Deliberate Problem Solving with Large Language Models." arXiv:2305.10601, 2023

Instructions for AI

inspired by Tree of Thoughts, Chain of thought and self-Consistency methods¹

Four-PERSONAS: HTA Expert, Librarian (SLR expert), Statistician, DS/ML Expert

I. PLANNING PHASE

- 1. Each persona reads
 - I. the input [1500-word chunk]
 - II. "Chief Scientist's" 3 Inclusion and 2 exclusion criteria
- 2. Devises a plan on how to assess the T&A for inclusion/exclusion
- 3. Critique each others and own's work
- 4. Based on critique devise a final combined plan

II. EXECUTION PHASE

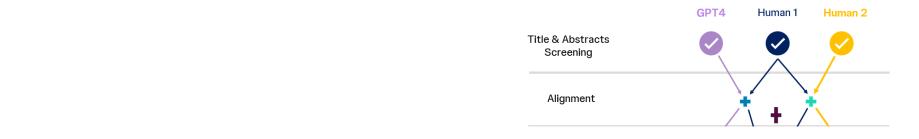
The 4-personas, acting upon their final plan, develop:

- I. Potential inclusion reasons for each T&A
- II. Potential exclusion reasons for each T&A

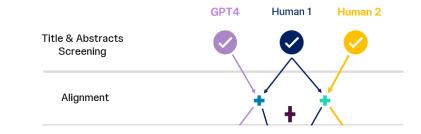
Instructions for AI

inspired by Tree of Thoughts, Chain of thought and self-Consistency methods

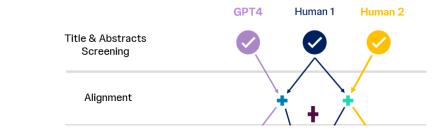
3 polymaths independently assess the **inclusion** and **exclusion** arguments, and give an 1-5 ranking based on the following categories:


(1) Totally Irrelevant = fits >1 exclusion criteria perfectly

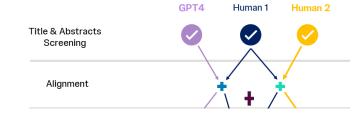
(2) Marginally Relevant = fits >1 inclusion criteria but vaguely


(3) Ambiguously Relevant = Probably meets 0 inclusion and exclusion criteria

(4) Generally Relevant = Meets >1 inclusion & >1 exclusion criteria


(5) Precisely Relevant = Meets >1 inclusion criteria & 0 exclusion criteria

Agreement <u>before</u> Alignment	Human1	Human2
GPT4	91%	92%
Human1	-	95%



	AI: Yes	AI: No	Human convinced by Al
Human 1: Yes	2%	4.5%	60% (out of 4.5%)
Human 1: No	4.9%	88.6%	12.8% (out of 4.9%)

<u>After</u> Alignment	Accuracy*	Sensitivity*
AI	92.6%	44.9%
Human1	96.1%	68.9%
Human2	98.4%	78.7%

*Benchmark = 2 humans + AI selection after alignment was considered the ideal selection

<u>After</u> Alignment	Accuracy*	Sensitivity*
AI+Human1	98.4%	77.2%
2 humans	99.3%	93.7%
2 Humans + Al	100%	100%

*Benchmark = 2 humans + AI selection after alignment was considered the ideal selection

Results – GPT4 Full-Text

<u>After</u> Alignment	Accuracy*	Sensitivity*
AI+1 Human / AI+2 Humans	99%	72.5%
2 humans	99.8%	96.1%
3 Humans + Al	100%	100%

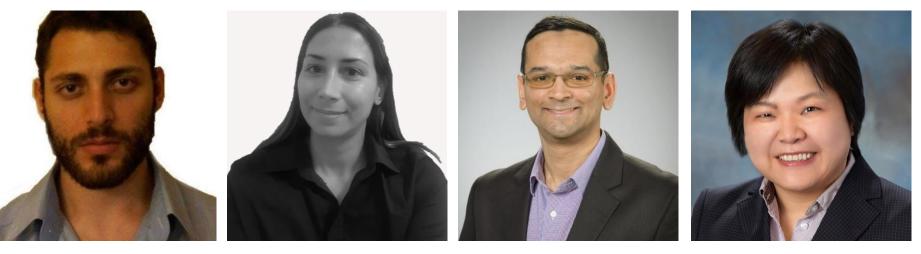
*Benchmark = 3 humans + AI selection after alignment was considered the ideal selection

Results – GPT4 Full-Text

<u>After</u> Alignment	Accuracy*	Sensitivity*
AI	58.1%	67.7%
Human2	85.4%	81.6%
Human3	85.6%	89.5%
Human1	88.9%	98.7%

*Benchmark = 2 humans + AI selection after alignment was considered the ideal selection

Key observations


- The SLR topic was too broad as shown by low sensitivity for both Human and AI.
- Al manages to convince Human in some cases.
 - Sticks more to the inclusion and exclusion criteria
 - Helps with some missed articles by Humans
 - Deciphers poorly written abstracts
- Better refined inclusion/exclusion criteria helps AI performance.
- Full-text GPT4 outcomes are much worse compared to T&A
- Can Generative-AI, such as GPT4, help with SLR?
 Yes, based on preliminary results it can help, but not replace a human and still needs more work.

J&J MedTech

A JnJ Case Study: Al-value brief POC

J&J MedTech

Assessing Generative AI's capability in AI-value brief POC

Nikolaos Takatzoglou EMEA HEMA WC & Healing Lead HEMA Lead Greece & Cyprus EMEA MedTech HEMA Polina, Vrouchou Associate Director, Global Health Technology Assessment MedTech HEMA Naj Gunja Associate Director, Wound Closure and Healing MedTech HEMA

Cindy Tong Director, EMEA RWE & Global VBHC Analytics MedTech HEMA

Project Scope

 Proof-of-concept (POC) value brief for JnJ Product

 Semi-automatic process with ChatGPT4

• Final deliverable: 10-20 pages Value Brief for Internal Use, based on NICE 1000 pages evaluation document

Our Vision

• An End-to-End automated system "Auto-GPT Draft Value Brief Creator" with "push a button"

• Final editing will be performed by human with help of AI

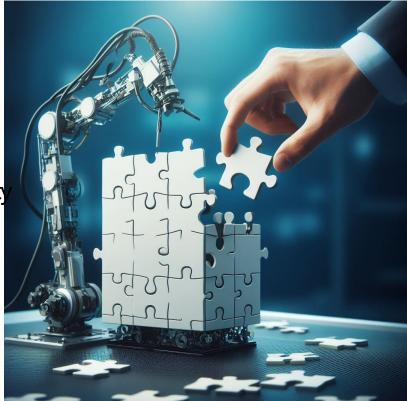
POC considered successful

Scarce hallucinations and good accuracy

- Controlled by our prompting methodology
- Process for input/output evaluation

FIRST DRAFT:

- First draft required ~20 less human working hours, vs 100% in-house draft
- Moderate quality vs Human Draft due to lack of flow, caused by input word count limit.



FINAL DRAFT.

- Additional 8-24 hours is expected for final human editing
- Expecting better quality vs human version

Key learnings Some of them...

- Human review critical for accuracy
- Fewer pages but more relevant = higher quality
- Human touch for final version necessary
- It's feasible and unavoidable

Our Thoughts

J&J MedTech

Our Thoughts

- The use of Large Language Models can help with summarizing evidence but also identifying them.
- Prompting is very important.
- LLMs are not capable to replace a human, yet.