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Outline

• The three effects of covariate 
adjustment
• Mean square error
• Variance Inflation factors (VIFs)
• Second order precision.

• A general investigation of VIFs for 
continuous covariates.

• An example.
• Categorical (including binary) 

covariates.
• Implications and applications.
• Conclusion.

• NB The context is randomised 
clinical trials.

• The focus is on the estimate of 
the treatment effect.
• Covariate effects are not of interest 

in themselves.
• I shall only consider adjusting for 

the main effect of covariates.
• Treatment by covariate 

interaction is not considered.
• Non-linear cases are not 

considered.
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Three Effects of Adjusting for Covariates

The power of three
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The power of three
• To the extent that the covariate is prognostic of 

outcome, the expected value of the residual 
mean square error is reduced.

• A source of ‘noise’ is identified and removed from the 
signal.

• To the extent that the covariate is not orthogonal 
to treatment (that is to say is not balanced), the 
variance multiplier used with the residual mean 
square error will increase.

• Ambiguity between what is the effect of treatment 
and what is the effect of covariate exacts a price in 
precision.

• Because you have used up a degree of freedom, 
second order precision is worsened.

• The noise that remains is less but your ability to 
estimate how much noise remains is  reduced.

• For example: confidence limits for the difference 
between two treatment groups in a parallel 
group trial.

 

2,

2

1 2

ˆ

1 1
ˆ

SE t

SE
n n

 


 

 

 
= + 

 

1. Mean square 
error will reduce if 
you add prognostic 
covariates.

2. Variance multiplier 
will increase (λ>1)if you 
add unbalanced 
covariates.

3. Residual degrees 
of freedom will 
reduce if you fit 
covariates and this 
multiplier will 
increase.
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1. Mean square error effect

• A simple illustration of this can 
be given by considering the case 
where the covariate is  a baseline 
measure corresponding to the 
outcome measure.

• The diagram shows the effect on 
the variance of the treatment 
estimate as a function of the 
correlation between baseline and 
outcome.

• Three approaches are used:
• Ignoring the baseline
• Using the change score
• ANCOVA.

6(C) Stephen Senn



1. Mean Square Error Effect (cont)
Illustrated by simulation of 200 trials
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2. Variance Inflation Factor
Standard theory of ordinary least squares

• The variance of the treatment estimate is

• The variance inflation factor is 
                   with the lower bound only being obtained 
if all covariates are orthogonal.
• λ = 1/(1-Rz

2) where  Rz
2is the coefficient of 

determination for the treatment indicator using 
the covariates to be fitted.

• For a categorical covariate with k+1 categories we 
have  Rz

2=Chik
2/N for the treatment x covariate 

contingency table.
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3. Second order precision 
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The relationship of the three to design, model and outcome
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Effect
Estimated

mean square 
error effect

Imbalance 
effect or 
VIF

Second 
order

precision

Influence

Design No* Yes No
Model Yes Yes Yes
Outcome Yes No No

(C) Stephen Senn

*Provided that the  the design does not balance for prognostic factors that are not in the model.



The value of looking at it this way

• Although the first and third terms are affected by the choice of model.
• Expected mean square error is a function of prognostic power of the model.
• Second order precision is a function of the number of parameters fitted.

• They are not affected by the design.
• It is thus confusing to include them in the consideration when 

comparing designs. For example:
• Completely randomised
• Median stratified.

• If the model is fixed, the design then governs the variance inflation 
factor.
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A general investigation of variance 
inflation factors for continuous 
covariates

Blowing in the wind
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Lines of a derivation
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1. Working with a partitioned inverse of the design matrix you can show that the variance inflation 
factor is given by                       where,         is the coefficient of determination  of the treatment 
indicator Z regressed on the covariates. Note that the greater the degree of balance, the less 
“predictive” the covariates are of treatment, the lower the value of the coefficient of 
determination and the closer λ is to 1.

2. Using the fact that multivariate discriminant analysis is equivalent to linear regression on the 
treatment indicator, you can show that if the covariates have a multivariate Normal distribution, we 
have the relationship 

3. However, given the degrees of freedom of the F distribution, its mean and variance are known.
4. Therefore, since, λ is a linear combination of an F-statistic, we can obtain the mean and variance of λ.
5. The results where there are k covariates and N subjects are 
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Notes

• These formulae do assume multivariate Normality.
• They do not depend on the correlation structure, except that it is 

assumed that the matrix of k predictors is of full rank.
• In fact, even this is not necessary; it is simply required that in the 

formulae, k is used to mean the rank of the predictor matrix and 
not the number of covariates.

• The distribution of the outcome variable is completely irrelevant.
• Note that this is a feature of the linear model. Non-linear models 

do engender a dependence on the outcome.
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An Example

An incomplete blocks design made even less complete
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A highly modified trial in asthma

The trial
• This was an incomplete blocks 

cross-over trial in 7 treatments (3 
doses of each of 2 formulations and 
a placebo), 5 periods and 21 
sequences.

• I am only going to use data from 
period one for two of the 
treatments: placebo and the 
highest dose of one of the 
formulations.

• We thus create a two-arm parallel 
group design.

The data
• We have data from 46 patients.
• The 5 covariates available are

• Sex
• Height
• Weight
• Age 
• Log baseline forced expiratory volume 

in one second, FEV1.
• Since we are investigating the VIF 

only, the outcome is not needed.
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Baseline Covariate Distribution
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Investigation by simulations

Number of Covariates Number of models

0 1

1 5

2 10

3 10

4 5

5 1

Any number 25 = 32

Sampling Plan Notes

Multivariate Normal Five dimensions.
Observed correlation 
structure. One variate 
dichotomised to create 
‘sex’

Permutation Covariates fixed. 
Treatment labels 
randomly switched.

Bootstrap Each patient is 
randomly assigned (with 
replacement) one of 46 
sets of covariates. The 
treatment is fixed.
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Variance Inflation Factors 
(VIFs) for all 32 models for 
the actual data

• The VIF is 1 when no covariates are in 
the model
• This must be the case

• If all 5 covariates are added, then for 
this example the VIF is 1.121.

• The expected value for 5 is 1.132.

• On the next few slides various re-
sampling approaches will be used to 
examine the distribution of VIFs and 
check it against theory.
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Mean inflation factors for 3 simulation 
approaches
Theoretical values 

Where N is the number of 
patients and k is the number of 
covariates given by dashed 
horizontal line.
Symbol open, sex is not in the 
model. Symbol closed, sex is in 
the model.
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Inflation factor variances for 3 simulations 
approaches
• Again, theoretical values are 

given by dashed horizontal 
lines.

• Symbol open, sex is not in the 
model. Symbol closed, sex is 
in the model.
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Conclusions and a Warning

Conclusion
• The formulae work well.
• It does not seem to matter 

what form of sampling is used.
• It does not seem to matter 

whether a model includes the 
binary covariate or not.
• Caution: for very small samples 

it will matter a bit.

Warning
• This is only one example!
• However, it gives reasonable 

hope that the theory will be a 
good starting point and guide 
for any simulation.
• In particular, because for 

sampling from the  multivariate 
Normal, any example will do.
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Categorical predictors

This and that

(C
) Stephen Senn
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Basic set up

1 2 3 … k+1

A n1,1 n1,2 n1,3 n1,k+1

B n2,1 n2,2 n2,3 n2,k+1

In fact, it turns out that the 
variance inflation factor is a 
function of the chi-square 
statistic, χ2.
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Contingency table showing the distribution of the 
numbers by category and treatment for a categorical
predictor.

A binary covariate, such as sex in the 
example we had is just a special case with k=1.

Note that perfect balance implies that the observed
numbers are equal to the expected numbers 
calculated from the margins.

This also implies that the chi-square statistic will be
zero.
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Simulation of Variance Inflation for a 
Categorical Covariate
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Implications and Applications

Hopefully, without complications
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) Stephen Senn
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Some possible questions regarding covariate 
adjustment will be addressed.
• We assume throughout.

• There will be no “double-dipping fishing expeditions”.
• Models used in analysis must be pre-specified.

• We do not claim that we have found perfect answers to these 
problems.
• We are just illustrating that the three factor framework can be a useful 

way of thinking about them.
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Example 1. Should you add another covariate?
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Assume that you have k covariates in the model with  
residual degrees of freedom and wish to add another.  As 
regards the VIFs  the relevant consideration is the ratio                  
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On the other hand, as regards MSE the relevant 
consideration is their expected ratio,
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Caution

• This ignores the issue of second order precision.
• This is a controversial subject and there are various approaches 

that we discuss in our paper.
• I don’t propose to discuss this further here but suggest that a 

possible rule of thumb worth investigation is that if 

it is worth adding a covariate to the model
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Example 2: What to do with median 
stratification?

Basic Set Up
• Suppose that we have one continuous 

covariate, X and a treatment indicator 
Z.

• We try and balance the covariate by 
using stratification using the predicted 
median.

• What should we fit?
• The stratum indicator, S?
• The continuous covariate, X?
• Both?
• Neither?

• What have we gained by stratification?

Qu’s classification
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( ) :

( ) :

( ) :

( ) : .

Model A Y Z

Model B Y Z X

Model C Y Z S

Model D Y Z X S

+

+

+ +

Qu, Y. (2011). "Issues for stratified randomization 
based on a factor derived from a continuous 
baseline variable." Pharm Stat 10(3): 232-235.
See also
Sullivan, T. R., T. P. Morris, B. C. Kahan, A. R. 
Cuthbert and L. N. Yelland (2024). "Categorisation of 
continuous covariates for stratified randomisation: 
How should we adjust?" Stat Med.



Variance inflation factors for stratified and 
randomised designs

VIF -1

Label Model Randomised Stratified

A Y ~ Z 0 0

B Y ~ Z + X Τ1 𝑁 − 4 Τ1 − Τ2 𝜋 𝑁 − 4

C Y ~ Z + S Τ1 𝑁 − 4 0

D Y ~ Z + X + S Τ2 𝑁 − 5 Τ1 𝑁 − 5
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Uses fact that we are now
sampling from a truncated Normal.

Senn, S. J., F. König and M. Posch (2024). "Stratification in Randomised Clinical Trials 
and Analysis of Covariance: Some Simple Theory and Recommendations." arXiv preprint 
arXiv:2408.06760.



Example 3. Is the propensity score a good way 
to adjust for covariates?
• There is a whole heap of simulations investigating the performance of 

the propensity score compared to analysis of covariance.
• The messages are contradictory and confusing.
• However, the following is the case:

1. By concentrating on that which is predictive of assignment, PS will maximise 
the variance inflation factor, λ.

2. By concentrating on that which is predictive of outcome, ANCOVA will 
minimise the MSE.

• Obviously, there is a problem if the ANCOVA model is not pre-specified 
but clearly PS is inadmissible.

• So, the answer is , “no”.
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Senn, S. J., E. Graf and A. Caputo (2007). "Stratification for the propensity score compared with linear regression 
techniques to assess the effect of treatment on exposure." Statistics in Medicine 26(30): 5529-5544.



Example 4. Should you categorise a covariate, 
for example age?
• Consider how many categories you might want to create.
• If you have k+1 categories you will have k dummy variables and k is the 

value that can be used to calculate the expected value of the VIF, λ.

• You can now choose a set of k smooth functions (for example fractional 
polynomials) to fit a set for which:
• The expected effect on λ will be the same
• The effect on second order precision will be the same.

• The only issue that remains is, “can you do better in terms of expected 
mean square error?”

• Most reasonable modellers will be able to answer ‘yes’.

• So, the answer to the question is ‘no’.
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Example 5. Should you replace a set of covariates by a 
prognostic score based on historical data?
• Using a single prognostic score sets the value of k to 1.
• If there are k >1 covariates then clearly by using them:

• The expected value of the VIF, λ will be larger
• Second order precision will be reduced.

• However, the relationship between outcome and the covariates may well vary 
somewhat from trial to trial.

• Therefore, the prognostic score will be imperfectly constructed.
• The expected reduction of the mean square error will be greater by using the 

covariates independently in the model.

• So, the answer is: “it depends on the sample size (& the number of covariates)”. 
See Example 1.
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Siegfried, S., S. Senn and T. Hothorn (2023). "On the relevance of prognostic information for clinical trials: 
A theoretical quantification." Biom J 65(1).



Example 6. What is the value of minimisation 
etc?
• Assuming that the covariates that are used to allocate treatment 

using minimisation or some superior approach such as Atkinson’s 
algorithm will be modelled whatever the design, there is no 
advantage as regards:
• Expected mean square error
• Second order precision.

• The only benefit is in terms of the variance inflation factor.
• In practice this will be lower than the value for a randomised 

design but somewhat larger than 1.
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Senn, S. J., V. V. Anisimov and V. V. Fedorov (2010). "Comparisons of minimization and Atkinson's algorithm." 
Statistics in  Medicine 29(7-8): 721-730.



Conclusion

The N is high and the end is nigh
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Conclusions

• We are not saying that there is no room for simulation.
• We are saying that simulation will be more valuable if it is guided by 

theory.
• The theory provides a check and vice versa.
• The theory provides a thread that can be used to link different simulations.
• The theory helps us isolate what particular feature is relevant.
• The theory frees the simulations to go beyond the standard case the theory 

covers.
• We think that it useful to look at the three effects on precision of 

inferences.
• We also suggest that statistics such as power, being derived from 

variances, are less useful to study than variances themselves.
• To do this, the variance inflation factor is key.
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Finally
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“The fact is that, useful though simulation is, an analytical solution 

is always preferable …The relative power of an analytic solution, as 

compared with a simulation approach to  a model, is such that 

even if a full analytical solution is impossible, such a solution to 

part of the model, with the remainder investigated by simulation, 

is preferable by far to a simulation solution to the whole model.”

Morgan, B. J. T. (1984). Elements of Simulation, Chapman and Hall.
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