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Why I am here today

“Curiosity Never
Retires”

▶ We are colleagues and friends for more than 20 years

▶ We had always interesting and very fruitful discussions

▶ Joint involvement in activities of the IBS-DR and ROeS

▶ Involvement of Uli and Kaspar (Roche as industry
partner) in the BMBF project BIMIT (with M. Kieser)

▶ Joint publications
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Some of Uli’s work on surrogate endpoints
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Adaptive survival trials are particularly important for enrichment designs in

oncology and other life‐threatening diseases. Current statistical methodology

for adaptive survival trials provide type I error rate control only under restric-

tions. For instance, if we use stage‐wise P values based on increments of the

log‐rank test, then the information used for the interim decisions need to be

restricted to the primary survival endpoint. However, it is often desirable to

base interim decisions also on correlated short‐term endpoints like tumor

response. Alternative statistical approaches based on a patient‐wise splitting

of the data require unnatural restrictions on the follow‐up times and do not

permit to efficiently account for an early rejection of the primary null hypoth-

esis. We therefore suggest new approaches that enable us to use discrete surro-

gate endpoints (like tumor response status) and also to incorporate interim

rejection boundaries. The new approaches are based on weighted Kaplan‐

Meier estimates and thereby have additional advantages. They permit us to

account for nonproportional hazards and are robust against informative cen-

soring based on the surrogate endpoint. We will show that nonproportionality

is an intrinsic and relevant issue in enrichment designs. Moreover, informative

censoring based on the surrogate endpoint is likely because of withdrawals and

treatment switches after insufficient treatment response. It is shown and illus-

trated how nonparametric tests based on weighted Kaplan‐Meier estimates can

be used in closed combination tests for adaptive enrichment designs, such that

type I error rate control is achieved and justified asymptotically.

KEYWORDS

combination test, flexible design, surrogate endpoint, time‐to‐event data, type I error rate control

1 | INTRODUCTION

Adaptive designs are a research topic for more than 25 years and are still a vital field with interesting and challenging
questions.1,2 One of the yet insufficiently resolved issues is type I error rate control in adaptive survival trials when data
from surrogate endpoints are used.1,3-5 Adaptive survival trials are particularly interesting in oncology where survival or
progression‐free survival is a typical primary endpoint in phase III and individualized treatment strategies play an
increasing role. The so‐called adaptive enrichment designs permit us to consider several subgroups within a single phase
III trial and to enrich the study population by promising subgroups as indicated in an interim analysis.6 Since the
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Abstract
The development of oncology drugs progresses through multiple phases, where after
each phase, a decision is made about whether to move a molecule forward. Early
phase efficacy decisions are often made on the basis of single-arm studies based on
a set of rules to define whether the tumor improves (“responds”), remains stable, or
progresses (response evaluation criteria in solid tumors [RECIST]). These decision
rules are implicitly assuming some form of surrogacy between tumor response and
long-term endpoints like progression-free survival (PFS) or overall survival (OS).
With the emergence of new therapies, for which the link between RECIST tumor
response and long-term endpoints is either not accessible yet, or the link is weaker than
with classical chemotherapies, tumor response-based rules may not be optimal. In this
paper, we explore the use of a multistate model for decision-making based on single-
arm early phase trials. The multistate model allows to account for more information
than the simple RECIST response status, namely, the time to get to response, the
duration of response, the PFS time, and time to death. We propose to base the decision
on efficacy on the OS hazard ratio (HR) comparing historical control to data from the
experimental treatment, with the latter predicted from a multistate model based on
early phase data with limited survival follow-up. Using two case studies, we illustrate
feasibility of the estimation of such an OS HR. We argue that, in the presence of
limited follow-up and small sample size, and making realistic assumptions within
the multistate model, the OS prediction is acceptable and may lead to better early
decisions within the development of a drug.

K E Y W O R D S
clinical trial, decision-making, multistate model

1 INTRODUCTION

In pharmaceutical oncology drug development, single-arm trials are often used in early phase to gather the first evidence of a
new molecule’s efficacy, with drug activity determined through tumor response using the response evaluation criteria in solid
tumors (RECIST) criterion (Brown et al., 2011; Grayling & Mander, 2016; Therasse et al., 2000). The observed complete
response (CR) proportion, partial response (PR) proportion, overall response (OR) proportion, defined as CR + PR, or disease
control (DC) proportion defined as OR + stable disease (SD) patients, is compared to a benchmark based on historical control
data. A decision is then made whether to advance the molecule into pivotal randomized clinical trial (RCT) testing, or Phase 3.
The implicit assumption for this gating approach is that the measures evaluated at the end of the early development phase are good
550 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Biometrical Journal. 2020;62:550–567.www.biometrical-journal.com
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restricted to the primary survival endpoint. However, it is often desirable to
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Content of my talk

▶ Brief introduction to adaptive survival trials (AST)
▶ Difficulties with surrogate endpoints in AST
▶ Information unrestricted and information restricted adaptive designs
▶ Summary and discussion
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Adaptive Survival Trials
with Surrogate Endpoints
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Confirmatory Adaptive Designs
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The p-clud condition (BRANNATH ET AL., 2002, LIU & PLEDGER, 2006)

Adaptive designs control the type I error rate α under the following ”p-clud” condition:

P0( q ≤ u |p ) ≤ u for all 0 ≤ u ≤ 1 and all 0 ≤ p ≤ 1

This condition holds when

▶ q is computed from an independent second stage cohort with a conservative test for
the selected second stage design,

▶ or more general: q is conditionally conservative, i.e.

P0( q ≤ u | used interim data ) ≤ u for all 0 ≤ u ≤ 1 and any interim data.

This condition is useful for overlapping (dependent) first and second stage data!
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Adaptive Survival Trials (AST)

▶ Adaptive designs with primary and possible also secondary time to event endpoints,
like overall and/or progression free survival

▶ Usually, statistical inference based on logrank test or Cox’s proportional hazard
model by utilizing right and left truncation (or independent increments)
→ “follow-up-wise splitting” with stoch. independent stage-wise p-values

▶ Alternative: Inference based on restricted mean survival or average hazard ratio
(requires finite time horizon; see Brückner, Burger & Brannath, 2018)
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Follow-up-wise separation of stages

t

s

0 IA FA

S1

S2

▶ Stage 1 p-value:

follow-up till IA, i.e. right censoring at IA

▶ Stage 2 p-value:

follow-up from IA, i.e. left-truncation at IA
or using increments.

▶ P-clud condition via independent
increments or left-truncation

▶ From the patients censored at the IA, no
(other) information can be used for the
adaptations.
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Use of surrogate endpoints in AST

▶ Usually short-term surrogate endpoints (SEP) like response rate (categorical) or
progression free survival with OS a primary or co-primary endpoint are available.

▶ Surrogate endpoints may be used for . . .

– interim treatment and/or subgroup selection;

– interim sample size and/or event number reassessment;

– an interim futility decision in an AST or GSST (= Group Sequential Survival Trial);

– an interim efficacy testing in an AST or GSST:

- with the intention for an accelerated approval, or
- to enhance an early inference for the primary endpoint with a statistical model.

11



Difficulties with surrogate endpoints (BAUER & POSCH, 2004)

▶ Surrogate endpoints (SEP) are usually correlated with the primray endpoint (PEP)
(e.g. tumor response with progression free survival)

▶ A randomly promising interim result in SEP is indicative for a promising result in the
primary endpoint (PE) of the interim patients after the interim analysis

⇒ a reduction in second stage sample size or follow-up time transfers the randomly
promising result to the second stage ⇒ positive bias and type I error rate inflation

▶ A randomly unpromising interim result can be diluted by increasing the second
stage sample size or follow-up time ⇒ positive bias and type I error rate inflation

▶ Independent increments no longer guaranteed ⇒ p-clud property difficult to achieve!
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Information Unrestricted AST
with Surrogate Endpoints
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Patient-wise separation of stages

t

s

0 IA FA

S1

S2

▶ Stage 1 p-value:

use patients recruited before IA

▶ Stage 2 p-value:

use patients recruited after IA

▶ P-clud property follows from speparation
into independent cohorts

▶ All interim data can be used for the
adaptations
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Difficulties with patients-wise separation

1. The first stage p-value can only be computed at end of the trial
⇒ no early rejection possible

2. For strict type I error rate control, patients from stage 1 must be followed-up as
pre-planned and their later events be ignored (Jenkins et al., ’11; Magirr et al., ’14)

▶ To overcome the issue of not using all observed events:
Magirr et al. consider a conservative adjustment of critical boundaries, but also
show that this approach is too conservative for applications.

▶ An always valid and efficient solution is still lacking!!
▶ Possible practical solution: Additional descriptive analysis with all events to

(hopefully) confirm the adaptive test result.
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Three-fold separation approach (JÖRGNES ET AL., 2017)

Permits early rejections while using all interim data for the adaptations:JÖRGENS ET AL. 333

FIGURE 1 Illustration showing which events contribute to each of the P values pG1
1 , pG1

2 , pG2 . The x-axes represent calendar time. Each line
corresponds to a patient and represents the time period he or she is at risk. Events are represented by triangles, censoring times by dots. The
patients at risk in each of the shaded regions contribute to the corresponding P value. Especially, the events of the first-stage cohort G1 are
split in two parts according to the stage in which they occur. Note that for the cohort G1, only events up to calendar time T enter the test
statistics, even if the trial is extended to T′ > T

Some comments are as follows:

(i) Under the null hypothesis, Z⋆
1 , Z⋆

2 are asymptotically multivariate normally distributed with mean 0, variance 1,
and correlation w11. This holds, because, the P values pG1

1 , pG1
2 , pG2 are asymptotically independent and uniformly

distributed under H0. Therefore, the level-𝛼 condition is given by 1−Φ0,Σ (u1,u2) = 𝛼, whereΣ is given by 𝜎11 = 𝜎22 =
1, 𝜎12 = 𝜎21 = w2

11. Thus, the critical values correspond to the boundaries of a classical two-stage group sequential
trial with interim information fraction w2

11.
(ii) The proposed test shares the limitation of the patient-wise separation procedure that, for cohort G1 only events up

to the prespecified time T enter the test statistics. However, this ensures that the increment of the log-rank statistics
of the G1 cohort is not affected by the adaptations. Note that the Type I error rate control would still be maintained,
if the analysis time T for the cohort G1 was adapted based on the interim P value pG1

1 (and additionally data of
patients that had an event in the first stage of the trial), only. However, this would require a two-step approach in
the implementation of the interim analysis. First, only the interim test statistics and information on patients that
experienced an event are revealed. On this, basis the analysis time T is adapted to a time T1′. Then the remaining
interim data are revealed, and the design for the second-stage cohort may be adapted (eg, the analysis time T′ or
number of events for the second-stage cohort can be fixed). In the final analysis, the P value pG1

2 is then computed,
censoring all event times at time T′

1, the P value pG2 includes all events until time T′.
(iii) The weights must be chosen in the planning phase. In analogy to group sequential tests, one can choose the weights

proportional to the expected number of events contributing to each of the three P values, such that

w2
11 = e11

e11 + e12 + e2
, w2

12 = e12
e11

w2
11 , w2

2 = 1 − w2
11 − w2

12 ,

where e11 and e12 denote the number of expected events in the G1 cohort in the first and second stage, respectively,
and e2 the number of expected events in the G2 cohort. Note that e11 (and only e11) may be replaced by the actually
observed number of events at the interim d11, such that the critical value may be calculated at the time of the interim
analysis.

(iv) As for the patient-wise separation procedure, instead of prespecifying an analysis time T, one can prespecify the
number of first- and second-stage events of the first-stage cohort G1. Then the P value pG1

2 is based on the independent
increment of the log-rank statistics of cohort G1 where all event times are censored at the time where the prespecified
number of events has been reached. Similarly, for the second stage, the analysis time can be determined in an event
driven fashion.
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▶ Separation of data in three parts;

▶ early inference with pG1
1 ;

▶ combination of stoch. independent p-values

pG1
1 , pG1

2 , pG2

with inverse normal method.

Important remark: The design for pG1
1 and pG1

2 must be as pre-specified (like in a GSST);
(only) the design for pG2 can be adapted at the IA using all interim data!
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Information Restricted AST
with Surrogate Endpoints
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Conditional p-value approach

▶ The information used for the adaptations is restricted to specific interim data /
estimators / test statistics D1.

▶ The second stage p-value is based on a second stage test statistics Z2 whose
conditional null distribution function F2(z|D1) = P0(Z2 ≤ z|D1) is known.

▶ In this case the second stage p-value

q = 1 −F2(Z2|D1)

satisfies the (generalized) p-clud condition:

P0( q ≤ u |D1 ) ≤ u for all 0 ≤ u ≤ 1 and any interim data D1

▶ Disadvantage: Interim surrogate information that is not included in the first stage
p-value p or in the conditional error function A(interim data) remains unused.
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Conditional p-value approach with normal statistics

▶ Often (D1,Z2) = (X1, . . . ,Xm,Z2) is under the null hypothesis (at least asymptotically)
multivariate normal with E0(X1) = · · · = E0(Xm) = E0(Z2) = 0 and known or estimable

V1 = Cov(D1) =
(
Cov(Xi ,Xj)

)
1≤i,j≤m and v2 =

(
Cov(Xi ,Z2)

)
1≤i≤m

▶ Then
Z2

∣∣
D1

∼ N
(
vT V1D1, vT

2 V1v2
)

and the second stage p-value

q = 1 − Φ
((

Z2 − vT V1D1
)
/
√

vT
2 V1v2)

)
fulfils the generalized p-clud property (at least asymptotically).

▶ Liu & Pledger (2006) applied this to partial tumor response, PFS and overall survival,
with score statistics from logistic regression and Cox models.
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Joint Modeling approach

▶ Methods for using the surrogate endpoints to predict the primary endpoint
(e.g. Beyer et al. 2020)

▶ Requires a joint model for the used surrogate and primary endpoint
(e.g. multistate models)

▶ With a categorical surrogate endpoint (e.g. tumor response) a non-parametric
modeling is possible (Brückner, Burger, Brannath, 2018)

▶ In more complex situations, like with a continuous or time to event SEP, the statistical
inference may rely model assumptions and also a joint null hypothesis!

▶ A still open research question:
When and how is it possible to utilize surrogate information in a model robust way
(e.g. via double robust estimation techniques from causal inference)?

20



Utilizing categorical SEP (BRÜCKNER, BURGER AND BRANNATH, 2018)

▶ Assume that adaptations depend (only) on a categorical SEP and the PE.

⇒ the second stage follow-up time is determined for each

tcs-stratum = (treatment×SEP-category× stage) – stratum

before the respective stage starts.

▶ With a patient-wise separation of stages, we can unbiasedly estimate the primary
endpoint’s survival function within each tcs-stratum using all events.

▶ With a follow-up-wise separation of stages, we obtain unbiased tcs-strata-wise
estimates (e.g.) by using right censoring at stage 1, and left-truncation (plus right
censoring) at stage 2, in each stratum and also using all events.

⇒ First and second stage estimators are stoch. independent (asymptotically)

21



Non-parametric adaptive survival trials (BBB, 2018)

▶ The trt-specific overall survival functions are weighted means of the strata- wise
survival functions with weights = trt-specific probabilities of the SEP-categories.

▶ With stage-wise estimates of the SEP-category probabilities, we obtain stoch.
independent first and second stage estimates of the overall survival functions.

▶ This method can be applied with patient-wise and follow-up-wise separation of the
primary time-to-event data to each treatment group.

▶ The stage-wise and trt-specific survival function estimates can be used to obtain
stoch. independent stage-wise p-values for adaptive non-parametric tests on
the restricted mean survival time or average hazard rate.

▶ This provides valid adaptive survival trials where adaptations can be based on the
categorical SEP and time-to-event PE using all observed events.
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Some simulation results (BBB, 2018)

▶ Adaptive enrichment design with treatments E and C, full population F , biomarker
sub-population B and complement Bc = F \ B

▶ SEP = binary response with response rates πE,B, πE,Bc and πC .
▶ Simulation: Multiplicative hazard model for PE (OS) with hazard rate r for responder

vs. non-response in C, and hazard rates cB and cBc for E vs. C.

Five scenarios were considered in total; see Tables 2 to 4. The first scenario is the null hypothesis. In the second sce-
nario, there is only a treatment effect in the biomarker subgroup B, namely, with average hazard ratio of 0.7, and no
effect in the complement. In the last three power scenarios, there is a treatment effect in the biomarker subgroup B
and its complement Bc, and the parameters were chosen, such that the average hazard ratio in the full population
was always approximately 0.7.

In the third scenario (cB ¼ cBc ¼ 0:7, πE;B ¼ πE;Bc ¼ πC ¼ 0:4), the treatment has only an effect conditional on the
response but no effect on the response rates. In the fourth scenario (cB=0.7, cBc ¼ 0:8, πE,B=0.5, πE;Bc ¼ 0:3,
πC=0.2), treatment has a slightly smaller conditional effect than in the second scenario but now also has an effect in
the response rates. In the last scenario ( cB ¼ cBc ¼ 1, πE,B=0.8, πE;Bc ¼ 0:65, πC=0.2), treatment has no effect

TABLE 2 Type I error and power in adaptive enrichment trials with subgroup selection rule 1 for the stratified

log‐rank test (SLR), log average hazard ratio up to L (AHR), restricted mean survival difference up to L (RMS),

and difference in survival at L/2 (DIFF)

Power Power
Hazard Ratios Response Rates Patient‐wise Splitting Follow‐up–wise Splitting

r cB cBc πE,B πE;Bc πC SLR AHR RMS DIFF SLR AHR RMS DIFF

0.7 1 1 0.4 0.4 0.4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.7 0.74 1 0.4 0.2 0.2 0.73 0.88 0.88 0.71 0.79 0.91 0.90 0.74

0.7 0.7 0.7 0.4 0.4 0.4 0.89 0.87 0.87 0.68 0.95 0.91 0.91 0.74

0.7 0.7 0.8 0.5 0.3 0.2 0.88 0.98 0.98 0.91 0.92 0.99 0.99 0.92

0.5 1 1 0.8 0.65 0.2 0.02 0.96 0.96 0.84 0.02 0.97 0.97 0.86

TABLE 4 Type I error and power in adaptive enrichment trials with subgroup selection rule 3 for the stratified

log‐rank test (SLR), log average hazard ratio up to L (AHR), restricted mean survival difference up to L (RMS),

and difference in survival at L/2 (DIFF)

Power Power
Hazard Ratios Response Rates Patient‐wise Splitting Follow‐up–wise Splitting

r cB cBc πE,B πE;Bc πC SLR AHR RMS DIFF SLR AHR RMS DIFF

0.7 1 1 0.4 0.4 0.4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.7 0.74 1 0.4 0.2 0.2 0.43 0.58 0.59 0.47 0.50 0.64 0.64 0.52

0.7 0.7 0.7 0.4 0.4 0.4 0.88 0.86 0.87 0.68 0.95 0.91 0.91 0.74

0.7 0.7 0.8 0.5 0.3 0.2 0.66 0.86 0.87 0.68 0.80 0.93 0.92 0.77

0.5 1 1 0.8 0.65 0.2 0.02 0.86 0.87 0.66 0.02 0.92 0.91 0.75

TABLE 3 Type I error and power in adaptive enrichment trials with subgroup selection rule 2 for the stratified

log‐rank test (SLR), log average hazard ratio up to L (AHR), restricted mean survival difference up to L (RMS),

and difference in survival at L/2 (DIFF)

Power Power
Hazard Ratios Response Rates Patient‐wise Splitting Follow‐up–wise Splitting

r cB cBc πE,B πE;Bc πC SLR AHR RMS DIFF SLR AHR RMS DIFF

0.7 1 1 0.4 0.4 0.4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.7 0.74 1 0.4 0.2 0.2 0.72 0.88 0.88 0.70 0.78 0.90 0.90 0.74

0.7 0.7 0.7 0.4 0.4 0.4 0.89 0.87 0.87 0.69 0.94 0.91 0.91 0.74

0.7 0.7 0.8 0.5 0.3 0.2 0.87 0.98 0.98 0.90 0.92 0.99 0.99 0.92

0.5 1 1 0.8 0.65 0.2 0.02 0.96 0.96 0.84 0.02 0.97 0.97 0.86

4516 BRÜCKNER ET AL.
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Comments and Discussion
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Some practical and general comments

▶ A pre-specified adaptation rule ensures that only the permitted interim data is used
for the adaptations.

▶ Using (and staying) with a pre-defined adaptation rule may also lead to more efficient
designs but may not always be desirable.

▶ A stepwise disclosure of interim data can enforce the use of the only permitted
interim data.

▶ A complete futility/safety stop can always be based on all observed interim data.

▶ With multiple treatments and/or populations, usually the FWER need to be controlled.
This can be achieved via the closed testing principle.
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Summary and discussion

▶ The use of (short term) surrogate endpoints in AST complicates matters, since the
p-clud condition is not so easy to achieve.

▶ A patient-wise separation provides a simple solution, that permits to use all interim
data for the adaptations.

▶ However, it does not permit any explicit or implicit change of the interim patient’s
follow-up time which require to ignore some of the observed event data.

▶ Restricting the information used for the adaptations provides additional solutions.
▶ However, this requires statistical modeling and the validity of the design may rely on

specific model assumptions.
▶ Further methodological research is required to obtain valid and robust methods that

make efficient use of common types of surrogate information.
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