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Practical example: Anti-drug antibodies (ADA)

 Novel biologic treatments may provoke an unwanted immune response and form ADAs

 ADA can negatively impact safety, PK, PD and/or efficacy of such a biologic treatment

 ADA measured with defined schedule for a patient, e.g.

 ADA-positive if either new ADA formed, or ADA titer meaningfully increased after 
initiation of treatment 

 ADA = Intercurrent event in the language of ICH E9 addendum

– ADA is a post-randomization variable induced / influenced by treatment

– ADA has potential impact on the interpretation of the clinical outcome
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Practical example: Scientific questions of interest

 Compare ADA+ and ADA- on treatment arm only: No, we are interested in the treatment effect

 Compare ADA+ (ADA-) to entire control: Naïve analysis -> Not estimating causal treatment effect as 
effect may be influenced by differences in baseline features
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Practical example: Scientific questions of interest

 Compare ADA+ (ADA-) to the appropriate control (principal stratum approach)

1. An assessment of whether the ADA+ (ADA-) subgroup derives benefit from experimental treatment 

2. A comparison of treatment effects between each ADA subgroup compared to corresponding control
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Potential outcomes framework

 Practical example: RCT with ADA measured only in experimental arm, not in control arm

 Z: treatment assignment (1=treated with experimental txt, 0=treated with control)

 A: intercurrent event
– Az=1 = Potential outcome of ADA under treatment z=1

– Az=0 = Potential outcome of ADA under treatment z=0, always =0 for practical example of ADA

 Each patient has two potential outcomes Az=1 , Az=0 and before treatment happens both have the 
potential to become the actual outcome

 Y: outcome: Time to event variable (e.g. overall survival)
– Yz=1 = Potential outcome under treatment z=1

– Yz=0 = Potential outcome under treatment z=0

 Finally, let X be a set of baseline covariates
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Potential outcomes framework

 Causal treatment effect: Comparison of potential outcomes
– {𝑌𝑖

𝑧=1; 𝑖 in 𝑺}}  vs.  {𝑌𝑖
𝑧=0; 𝑖 in 𝑺}} on a common patient population S 

 For estimation of the causal treatment effect for ADA+ (analogous for ADA-), we need to estimate 
– distributions of Yz=1 | Az=1=1 and Yz=0 | Az=1=1 

 Distribution of Yz=1 | Az=1=1 can be estimated from observed data

𝑃(𝑌𝑧=1 > 𝑡|𝐴𝑧=1 = 1)= 𝑃(𝑌𝑧=1 > 𝑡|𝑍 = 1, 𝐴𝑧=1 = 1)=𝑃(𝑌 > 𝑡|𝑍 = 1, 𝐴 = 1)

– 1. equality: Treatment assignment independent of A and X, which is satisfied in RCT*

– 2. equality: Consistency assumption, i.e. having a well-defined treatment such that a patient’s potential outcome 
equals that observed in the trial, 

 Distribution of Yz=0 | Az=1=1 cannot be estimated from trial data without further assumptions
– Yz=0 and Az=1 are not jointly observed in the same patient in a RCT

 Literature provides a variety of assumptions to enable drawing causal conclusions on the effect of treatment 
in the principal stratum (Ding and Lu, 2017) 
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*In case of a landmark approach as outlined on slide 12, landmark population needs to be close to overall population



Principal Ignorability (conditional independence) 

 Aim: Allow estimation of distribution of Yz=0 | Az=1=1 based on observed data

 Principal ignorability assumption: 𝑌𝑧=0 ⃦ 𝐴𝑧=1 | 𝐗

 Whether a patient would be 𝐴𝑧=1=1 (i.e. ADA+) under treatment is independent of their outcome where 
they assigned to the control group, conditional on X

 Simple causal diagram (DAG) that is compatible with this assumption for the control arm in our setting
(Dukes et al. 2021)

 Similar to “no unmeasured confounding” assumptions often used in propensity score approaches in 
observational studies, but principal ignorability is an assumption across-worlds
– Across-worlds:

 Potential outcomes across treatment and control are never observed jointly

 For a patient on the control arm we can observe Yz=0 (i.e outcome on control) but not Az=1 (i.e. ADA status on 
treatment)

 For a patient on the experimental treatment arm, we can observe Az=1 but not Yz=0
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- Weighted Placebo (“Control”) Patients Approach (Bornkamp & Bermann 2020)

- Principal Ignorability Score-weighting (Stuart & Jo 2015)
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ADA status

ADA+ ADA-

Treatment T1 T2
Control C1* C2*

P(ADA+ |X)

Step 1. Use groups T1 and T2 to fit a logistic regression model of ADA status on baseline covariate X. 
Step 2. Use prediction model in step 1 to get the estimated probability of being ADA+ if taking experimental 

treatment for subjects in control group (C1*+C2*). 
Step 3. Use weight 1 for patients in group A, and the weight calculated in step 2 as the weight for control group 

(C1*+C2*) to fit a weighted Cox regression model to estimate the hazard ratio and associated CI. 

*Potential not observed outcomes 

Step 1

Step 2



Landmark analysis

 Our example Y is a time to event variable (overall survival; OS)

 OS may be a competing risk to observe the intercurrent event A
– Risk of immortal time bias: 

 Patients in experimental arm would need to live long enough to observe A

 Immortal time: Time to study entry to first post-randomization ADA assessment

 Patients in control arm can die during this “immortal time”

 Not accounting for leads to bias favoring the experimental arm subgroups

 Landmark analysis approach can be applied, such that A:=occurrence/absence of ADA at a 
fixed landmark time point

 Selection of an appropriate landmark time point is discussed in application section
– Remark: Need to be early enough such that landmark population is close to the overall clinical trial 

population so “randomization” property holds such that treatment assignment is independent of X and A
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Data set: General structure
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*Patient with OS Ya=i < landmark time point (i=0,1) are excluded

1. Landmark* 2. BL covariates

 ADA incidence in landmark population: ~22% 



Implementation details: Selection of baseline covariates X

 Reminder

– For standard RCT analyses, randomization is sufficient to make causal inference on treatment effect

– For the treatment effect in a principal stratum in a RCT, principal ignorability assumptions needs to be 
satisfied on top of randomization 

 𝑌𝑧=0 ⃦ 𝐴𝑧=1 | 𝑿

– Hence one needs to adjust for all baseline covariates that make the potential outcomes of ADA and the 
final outcome of overall survival for patients on control independent. 

– Principal ignorability by itself is a causal assumption. To justify, you need scientific and medical 
reasoning. Data can help, but on its own is not sufficient.

 E.g. it may be that you have not included all baseline covariates X

 or if even the right set of covariates exist because it could be that the counterfactual ADA status in 
control patients could have a direct impact on their outcome Y
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Implementation details: Selection of baseline covariates X

 Formally, only baseline covariates that influence both ADA and overall survival shall be 
included

 General
– Should be selected prospectively, based on literature review, clinical and statistical expert input, 

– Directed Acyclic Graphs (DAG) are useful to encode assumptions regarding both, the ADA and OS 
mechanisms. 

– Statistical modelling can be used to select candidates reasonably likely to influence OS or ADA 
separately.

 Particular
– Often challenging to assess if baseline covariate influences ADA, easier to assess if that covariate 

influences OS. 

– If a baseline covariate is related to OS but its influence on ADA is uncertain, include that covariate as it 
does not introduce bias and can improve precision of your estimate (Brookhart et al. 2006)

– If a baseline covariate is only influencing ADA but not OS, the covariate should be omitted 

 Can introduce bias and decrease precision since such a covariate has the same structure as instrumental 
variables as it is related to ADA but unrelated to OS (except through ADA) (Myers et al 2011) 
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Implementation details: Landmark analysis

 Landmark analysis to address immortal time bias

 Reminder: Landmark population needs to be very close to the overall population such that “randomization” 
holds

 Practical consideration choice of landmark time point for ADAs:
– Guided by the scheduled ADA assessments 

 E.g. in oncology often at BL + every 3 weeks afterwards just prior to next dose

– Aim for an early time point to have the population with observable A close to the overall trial population

 Later landmark time point causes more patients dying or being censored prior to landmark 

– Aim to catch at the landmark time point a large proportion of the patients in the trial who are ADA-positive at any 
time point in the trial.

 In many practical applications for ADAs, this will be the case.

 In our example: We selected a landmark timepoint of 4 weeks

 Remark: For the more general case when you have missing ADA status at landmark for some patients, 
more advanced methodology can be applied (Kong et al. 2020)
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Results
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ADA+ ADA-

Observation: Similar and strong treatment effect in both strata,  suggesting no clinically meaningful impact of 
appearance of ADA on outcome

Groups Hazard ratio 
(95% Confidence Interval)

ADA+ vs appropriate control 0.59 (0.43, 0.81)

ADA- vs appropriate control 0.57 (0.46, 0.71)



Results
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ADA+ Control

ADA- control

*vs* entire control (not 
estimating a causal effect)

HR (95% CI)

ADA+ vs entire control 0.67 (0.49, 0.92)

ADA- vs entire control 0.56 (0.45, 0.69)

Only treatment arm (not 
estimating a causal effect)

HR (95% CI)

ADA+ vs ADA- (unadjusted) 1.19 (0.86, 1.64)

ADA+ vs ADA- (adjusted) 1.16 (0.84, 1.62)

ADA-

ADA+

Entire control

Results principal stratum approach
(previous slides)

HR (95% CI)

ADA+ vs appropriate control 0.59 (0.43, 0.81)

ADA- vs appropriate control 0.57 (0.46, 0.71)



Model diagnostics

 Balancing of covariates: Assess if weighting using estimated propensity score induces a balance in measured covariates 
between ADA stratum and appropriate control

ASMD := 
ത𝑋𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡− ത𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙

(𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2 +𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2 )/2

 Not influenced by sample size, hence can be used to compare balancing of measured covariates when different weights 
are assigned to the same patient in control

 Challenges: 

– Literature suggests compare to constants like 0.1 or 0.25 but no concrete guidance in applied situations 

– Principal stratum analysis 

 usually is in setting with “small” N, ie either stratum {Az=1=1} or {Az=1=1} will have limited sample size

 Additionally, in trials with n:1 randomization, one may have a limited pool of control arm patients not allowing to 
strongly balance covariate distributions among treatment arms
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Model diagnostics

Supplemental model diagnostic framework

 “Balance similarity” with a RCT 

– Compare expected number of covariates with ASMD > constant (eg 0.1 and 0.25) for a RCT with same sample size 
(details see Appendix 1) 

 “Inversions” 

– Assess proportion of ASMDs which get larger after adjustment

22

Balance similarity Inversion

Stratum N Randomization 
ratio

No. of BL 
covariates

#Expected 
features 
>0.1

#Obs. 
Features*
>0.1

#Rev. 
features>
0.1

#Expected 
features 
>0.25

#Obs. 
Features*
>0.25

#Rev. 
features>
0.25

ADA+ 68 1:1 6 3.4 1 0 0.9 0 0

ADA- 240 1:1 6 1.6 1 1 0 0 0

*For covariates with multiple levels, if one level is above threshold (eg TOBHX_previous) then the covariate TOBHX is accounted as >threshold



Discussion & Links

 Causal thinking provides a transparent way to discuss causal effects

 Key benefit it that assumptions made are explicit and thus can appropriately be considered in 
the interpretation of the results from the analyses

 The application discussed shows that causal thinking (potential outcome framework) can help 
to implement the ICH E9 addendum, in particular the principal stratum estimand approach

Code available

 Example presented: R code available at https://github.com/openpharma/BBS-causality-
training

 Alternative example with code based on Bornkamp, Kaspar et al (2020): 
https://oncoestimand.github.io/princ_strat_drug_dev/princ_strat_example.html
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Appendix 1

 In a RCT, for feature m, we have 

 𝐷𝑚 =
ത𝑋𝑇− ത𝑋𝐶

𝑠𝑇
2

𝑛𝑇
+

𝑠𝐶
2

𝑛𝐶

=
ത𝑋𝑇− ത𝑋𝐶

𝑠
1

𝑛𝑇
+

1

𝑛𝐶

~𝑡𝑛𝑇+𝑛𝐶−2 since 𝑠𝑇
2 = 𝑠𝐶

2= 𝑠2

 𝐷𝑚 = 𝑆𝐷𝑀 ⋅
1

1

𝑛𝑇
+

1

𝑛𝐶

with SDM being the standardized mean difference

 Hence 𝑃 𝑆𝐷𝑀 > 𝑧 = 𝑃 𝑆𝐷𝑀
1

1

𝑛𝑇
+

1

𝑛𝐶

> 𝑧
1

1

𝑛𝑇
+

1

𝑛𝐶

which can be computed from the t-distribution

 Finally, for M features, the expected number of features with |SDM|>z, follows from Binomial(M,
𝑃 𝑆𝐷𝑀 > 𝑧 ) 

 Application:
– RCT with 1:1 randomization and n=38, on average, 3.1 covariates would have ASMD values > 0.25, and on 

average, 7.3 covariates would have ASMD values > 0.1

– This can now be compared with the observed counts to make an assessment of the model balancing

 Remark: Covariates with multiple levels (e.g. race), the covariate is considered above the threshold if the 
ASMD of any of the levels exceed the threshold 
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“Balance Similarity” with a RCT


