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Agenda

» |ntroduction
— Motivational example - the google flu story
— Why the hype?
— What is machine learning?

» Introducing key concepts
— Performance evaluation
— Cross-validation
— Bias-Variance-Tradeoff
— The bootstrap
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Agenda (continued)

» Machine Learning techniques

— Penalized regression
— Trees, Bagging, Random forests, and Boosting

— Finding subgroups
— Unsupervised learning
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The google flu story
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Social Media in Action - the google flu story

Detecting influenza epidi ‘
query data
Jeremy Ginbery’, M

“Because the relative frequency of
certain queries is highly correlated with
the percentage of physician visits in
which a patient presents with
influenza-like symptoms, we can
accurately estimate the current level of
weekly influenza activity in each region
of the United States, with a reporting
lag of about one day.”

U NOVARTIS | Reimagining Medicine



Social Media in Action

= “Google web search queries can be used to
estimate ILI percentages accurately in each
of the nine public health regions of the United
States. Because search queries can be
processed quickly, the resulting ILI estimates
were consistently 1-2 weeks ahead of CDC
ILI surveillance reports. The early detection
provided by this approach may become an
important line of defense against future
Influenza epidemics in the United States, and
perhaps eventually in international settings.”

ILI = Influenza-like iliness
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Triumph of Big Data

United States Flu Activity

Influenza estimate

Google Flu Trends
Estimate

Modeled
Data

= “ .. simple models and big
data trump more-elaborate
analytics approaches.”

A. McAfee, E. Brynjolfsson
Harvard Business Review, 90
Oct, 2012, p. 64
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Social Media in Action

Models built on
<—| data from 2003-
2008.
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Social Media in Action

09-Nov-20

The SmallWorld of Surface Tension

AYAAAS

BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,'** Ryan Kennedy,'** Gary King,? Alessandro Vespignani &

Large errors in flu
predictions were
largely avoidable,
which offers lessons
for the use of big
data.
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Why the hype?
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Hype Cycle for Emerging Technologies
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Machine learning community has made
great progress on many problems!
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Those problems are very different to
“Pharma problems™

» Machine learning successfully applied in high signal to noise settings
— E.g. Image recognition
— Easy to classify
— Lots of available data (e.g. online data bases, Reinforcement learning)

» “Problems” in pharma are oftentimes nothing like this
— Low signal to noise
— Hard to classify (When exactly is patient A doing better than patient B?)
— “Inherent” randomness
— Data generation is time consuming and expensive
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What does machine learning even
mean?
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Definitions

Alan Turing (1950): a machine is “intelligent” if it can make a human
believe that it is human

ARTIFICIAL

INTELLIGENCE MACHINE

e fuirlecariian LEARNING DEEP
LEARNING

A A
@ |0k

Automating intellectual  Giving computers the ability A class of ML exploiting many
tasks normally performed to ‘learn’ without being layers of non-linear
by humans explicitly programmed information processing
| |

1950's 1960's 1970°s 1980°s 1990°s 2000's 2010's
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ML vs(?) stats - pretty much the same
thing?
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Machine Learning in Medicine

TO THE EDITOR: Rajkomar and colleagues (April 4
issue)' summarize the advantage of machine
learning for medical predictive analvtics over tra-
ditional statistical methods] We agree that there
is no clear distinction between the two types o
algorithms but find the discussion of their dif-
ferences to be caricatural. [They argue that use of
statistical algorithms would be limited to simple
problems based on a limited set of curated and
standardized predictors. For complicated prob-
lems that involve a large number of noisy and
heterogeneous predictors, machine learning would
be preferred. Machine learning indeed requires
large sample sizes, but it is unclear how this will
yield accurate predictions regarding highly noisy
data, such as electronic health records (EHRs).
Sample size does not solve fundamental data
problems. On the contrary, machine learning may
not outperform traditional statistical models when
the “signal-to-noise” ratio is low.>* We therefore
need a better understanding of when different
algorithms have maximal value. We call for ex-
ternal validation studies by independent research-
ers in order to understand model generalizability
to new data and different environments. Although

such studies are scant,’® they can inform society
on the strengths and weaknesses of medical pre-
dictive analytics.

Ben Van Calster, Ph.D.

KU Leuven
Leuven, Belgium
ben.vancalster@kuleuven.be

Laure Wynants, Ph.D.
Maastricht University
Maastricht, the Netherlands
No potential conflict of interest relevant to this letter was re-
ported.
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To THE EDITOR: The article by Rajkomar and col-
leagues provides a thorough overview of machine

M ENGL) MED 380;26 NEJM.ORG JUNE 27, 2019

Ths Ao Comcdaeed Tassemal o Rl diniea

https://www.nejm.org/doi/pdf/10.1056/NEJMc1906060?articleTools=true
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Al and Social Science — Brendan O'Connor

running variance in Python and C++ Information cost and genocide —

Statistics vs. Machine Learning, fight!

Posted on December 3, 2008

10/1/09 update — well, it’s been nearly a year, and I should say not everything in this rant is totally
true, and I certainly believe much less of it now. Current take: Statistics, not machine learning, is the
real deal, but unfortunately suffers from bad marketing. On the other hand, to the extent that bad
marketing includes misguided undergraduate curriculums, there’s plenty of room to improve for
everyoune.

So it’s pretty clear by now that statistics and machine learning aren’t very different fields.|I was recently

pointed to a very amusing comparison by the excellent statistician — and machine learning expert —
Robert Tibshiriani. Reproduced here:

https://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
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Or are there distinct differences?

Points of Significance
Statistics versus machine learning

Danilo Bzdok, Maomi Altman & Martin Krzywinski

Mature Methods 15, 233-234 (2018) Download Citation &

Statistics draws population inferences from a sample, and machine

learning finds generalizable predictive patterns.

Two major goals in the study of biological systems are inference and
prediction. Inference creates a mathematical model of the data-
generation process to formalize understanding or test a hvpothesis about
how the system behaves. Prediction aims at forecasting unobserved
outcomes or future behavior, such as whether a mouse with a given gene
expression pattern has a disease. Prediction makes it possible to identify
best courses of action (e.g., treatment choice) without requiring
understanding of the underlying mechanisms. In a typical research
project, both inference and prediction can be of value—we want to know
how biological processes work and what will happen next. For example,
we might want to infer which biological processes are associated with
the dysregulation of a gene in a disease, as well as detect whether a

subject has the disease and predict the best therapy.

https://www.nature.com/articles/nmeth.4642
2 ), NOVARTIS
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STATISTICAL THINKING Home Posts Talks Datamethods Links  Publications  Teaching

Road Map for Choosing
Between Statistical Modeling
and Machine Learning

Last updated on 2018-09-11 - 9 minread - 26 Comments

Machine learning (ML) may be distinguished from statistical models (SM) using any of
three considerations:

Uncertainty: SMs explicitly take uncertainty into account by specifying a probabilistic
model for the data.

Structural: SMs typically start by assuming additivity of predictor effects when
specifying the model.

Empirical: ML is more empirical including allowance for high-order interactions that are

not pre-specified, whereas SMs have identified parameters of special interest.

Frank Harrel: https://www.fharrell.com/post/stat-ml/
21 U_ NOVARTIS | Reimagining Medicine
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People often mean different things
when comparing the two

= Some focus on the difference in application ...
— Using a linear model for prediction
— You are “doing Machine learning”
— Using a linear model for inference
— You are “doing statistics”

= Others focus on differences of the underlying
methodology/philosophy
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How did it all start? Maybe here...

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a g1ven stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown._The statistical communitv has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.

Culture = Maths/Stats versus Computing Science department
() NOVARTIS | Reimagining Medicine




The Two Cultures

Nature

* Nature is a black box
«Data modeling culture»

X Explicitly specified v
stochastic model
» Simple models with interpretable parameters
« Emphasis on interpretability and inference

«Algorithmic modeling culture»

X “Trained” algorithm

* Complex models that are trained rather fban explicitly specified

) o = ing Medicine
» Emphasis on prediction rather than interpretability

24



Leo Breiman’s opinion

25

Model validation based on goodness of fit and residual examination —
should be based on predictive accuracy

Led to irrelevant theory and questionable scientific conclusions

Kept statisticians from using more suitable algorithmic models and from
working on exciting problems

Estimated 98% of statisticians follow this approach

The goal should be accurate information, not interpretability

U NOVARTIS | Reimagining Medicine



Comments on the machine learning
culture

* In 2001 Breiman claimed about 2% of statisticians would follow the machine
learning or algorithmic approach

« However, since then a large literature has developed in statistical machine
learning

* More recent approaches combine realistically complex statistical models with
the scalability of machine learning algorithms

U NOVARTIS | Reimagining Medicine
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Statistical learning forms a bridge
between the two cultures

Springer Texts in Statistics

Gareth James
Daniela Witten

Trevor Hastie F Trevor Hastie
Robert Tibshirani Robert Tibshirani
Jerome Friedman

BRADLEY EFRON
TREVOR HASTIE

,,,,,,,,

Data Mining, Inference, and Prediction
with Applicationsin R

@ Springer

d NOVARTIS | Reimagining Medicine
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Model performance evaluation
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Setting

Binary prediction problem

Given predictors X, predict binary outcome (or class) Y € {0, 1}

Scoring classifier, e.g. predicted class probability p = P{(Y = 1) and a threshold criteria (e.g.
Y=1I(p >0.5) €{0,1}).

Think Logistic

Regression

Simple Example: Identify responders/non-responders at week 16 by baseline characteristics,
e.g. demographics, disease severity, mechanistic or genetic markers.
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Predictive performance of models

» What is “good performance”?
—> different performance metrics

= How to find out if your model is doing well?
- Model validation strategies:

hold-out data set, Cross Validation (CV), ...

» How to make your model do well?
—> bias-variance tradeoff, regularization, preventing overfitting

30 U NOVARTIS | Reimagining Medicine
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What is good performance?

Performance metrics
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Many ways to look at a 2x2
contingency table...

Y € {0,1}
True Class
Positive Negative
kS Positive True False
N 58 Positives Positives
Ye{01l} 53
20O Nedqative False True
- 9 Negatives Negatives
Column Total P N

» Many performance metrics exist. Choose wisely!
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~

7 €01

Accuracy

weights each sample in the same way

Y € {0,1}
True Class
Positive Negative
D Positive True False
=9 Positives Positives
= ©
@ O Neqative False True
o g Negatives Negatives
Column Total P N

# of correct
predictions

————
- -

(TP + T
Accuracy ===

N ——————T

8 # of predictions

Misclassification Rate = 1 — Accuracy

= Can be misleading in case of class imbalance (if 95% of samples are
negative, we can achieve 95% accuracy, by always predicting “negative”)
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True/False Positive Rate - TPR/FPR condition on the true label

Y € {0,1}
True Class
Positive Negative TP
= =<
= 32 Positive True FEEE TPR " P \— # positives
S B9 Positives Positives Ml
—— = @
w B8O Neqative False True
>~ o g Negatives | Negatives FPR =,
[ ) # ti
Column Total P N \\_I\LI/ negatives

» Important for ROC curves

= Note alternative terminology: TPR = sensitivity = recall,
FPR = 1-specificity

U NOVARTIS | Reimagining Medicine
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Pos/Neg Predictive Value — PPV/NPV condition on the predicted label

Y € {0,1}
True Class
Positive Negative
—
~ 3 " Positive True Fa_ll_se
S 850 Positives Positives
w @ O Negative False True
>~ o g Negatives Negatives
Column Total P N

FDR =1- PPV

PPV =- =
TP+ FP>

N ——————

Positive
predicted

# of predicted positives

Negative

predicted NPV = TZN
CFN + TN>

N———————

# of predicted negatives

» Note alternative terminology: PPV = precision

= Conditioning on predicted label can be useful in situations with
high imbalance (e.g. diagnostic screening or information retrieval)

35 PPV = positive predictive value, NPV = negative predictive value
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ROC curve and Area Under Curve (AUC)

sweep across range of possible thresholds of scoring classifier

TPR—TP
TP

0.9

0.8

0.7 1

0.4+

0.39

0.29

0.14

0.0

K
|
08’
®
g
117
,"V
00 01 02 03 04 05 06 07 08 08 10
FP
FPR:T

Y €{0,1}

True Class
Positive Negative
= 8,  Positive P FP
e 248
T =
w 20 . False True
[ -3 Negative Negatives | Negatives
Column Total P N
/4
’ Each threshold
/
’ produces a new table!
/

Y = I(p > threshold)
threshold = 0,0.1,0.2,...,0.9,1

AUC integrates over all possible thresholds / predictions you could make

AUC = P(Randomly-chosen positive is ranked more highly than a randomly-chosen negative)

AUC close to 1 is optimal, AUC close to 0.5 is no better than chance
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Trade-off between measures and mis-
classﬂ' cation costs

» Resolving trade-offs is hard
= Beware of implicit resolutions — e.g. all weights equal (accuracy, ...)

= Make decisions based on the use case of the prediction algorithm.
Unclear trade-offs often a warning sign of unclear use case.

» Think of consequences of prediction!

= Examples of different trade-off situations

Mass screening for First diagnosis of disease Treatment decision

disease

- N (healthy) >> P - Patient presents with - Should patient be treated?
(disease) problems - FP will lead to treating someone

- FP will lead to costs of - FP will lead to further that will not respond
further diagnosis tests - FN will not use treatment

- FN will leave people - FN will leave patient although would have responded
undiagnosed/untreated undiagnosed/untreated
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How to find out
if your model is doin
well?

- Model validation

U NOVARTIS | Reimagining Medicine
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How do we obtain performance
measures?

= Distinguish between ...

— Model evaluation for model selection or model improvement (“tuning”)
FROM

— Final model evaluation

= Mixing model selection/improvement with final evaluation tends to overestimate
the performance
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Hold-out test sets are the gold standard

for model evaluation

» Training and testing on the same data set will overestimate performance -
Don’t do this!

= The gold standard is to evaluate the trained, optimized and selected model on
a hold-out test set once

Complete data set
A

Training data Hold-out data
1. Determine/select best model 2. Predict
Could perform Cross-Validation on trainin 'data (once!)
40 % NOVARTIS | Reimagining Medicine
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Use n-fold cross-validation for tuning and

hold-out testing for evaluation

1) Cross-Validation for model selection (and/or tuning)

Validation

Validation

Validation

Validation

Validation

2) Train best model and evaluate performance on hold-out test set

Training data

Hold-out test

Gold standard for model evaluation

U NOVARTIS | Reimagining Medicine



Some words of caution

From: Validation in prediction research: the waste by data splitting by author Ewout
W. Steyerberg
= |n the absence of sufficient sample size, independent validation is misleading and

should be dropped as a model evaluation step.
— Independent validation in small samples, such as with 3 events among 10 patients, is

merely window dressing.
— Validation studies should have at least 100 events to be meaningful. In Big Data,

heterogeneity in model performance should be quantified rather than average performance.

= |In small samples, we should accept that small size studies on prediction merely are
exploratory in nature. We should use cross-validation and bootstrapping as more

efficient approaches to assess average model performance.

U NOVARTIS | Reimagining Medicine
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Total Error

Variance

Optimum Model Complexity

Error

Bias2

- N .

.

P
-

Model Complexity

Bias-Variance Tradeoff

and how Machine Learning finds the balance
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Bias and variance tradeoff

10 () ® °
EK ... ...
8
g ® ®
QL
c ®
=]
S 6 ®
=
41 @ | ¥ |
5 A 10

Dose (in mg)
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Bias and variance tradeoff

45

Treatment Effect

10

A4

10
Dose (in mg)
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Bias and variance tradeoff

10 o ®
®

E -
E 8 . Trial
€ 1
% f‘ . .2
6
=

4 T

5 10

Dose (in mg)
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Model 1: Linear model

Treatment Effect

5
Dose (in mg)

47

10
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Bias and variance tradeoff

Trial

5 10
Dose (in mg)
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Bias: The inability of a machine learning
method to capture the true relationship

Trial

Treatment Effect

5 10
Dose (in mg)
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Model 2: Flexible line

(0]

Treatment Effect
[8)]

5
Dose (in mg)
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How do the two models compare?

oo

Treatment Effect
(3]

5 10 5

10
Dose (in mg)

Dose (in mg)

51 U NOVARTIS | Reimagining Medicine



On the data from the other trial, the
linear model wins!

=
o

{n]

Treatment Effect
o

Treatment Effect

-
-

5 10 5 Fimemem fis eeamal lO

Dose (in mg)

Variance: the difference in fits between data sets
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The “flexible model” has low bias, but
high variability

o]

Treatment Effect
[#2]

Treatment Effect

5 10 ~ .
Dose (in mg) 2 Dose (in mg) 10
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The linear model has high bias, but low
variability

Treatment Effect

5 10
Dose (in mg)

5 10
Dose (in mg)
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Summary of bias/variance tradeoff

» Bias: The inability of a machine learning method to capture the true
relationship

= Variance: the difference in fits between data sets

The ideal algorithm has low bias, i.e. is able to accurately describe the true
relationship. It should also have low variability, such that is produces consistent
predictions across different datasets.
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Over-fitting can be understood
as bias / variance trade-off

Total Error

Variance

Oplimum Model Complexity  _

Error

Y

Model Complexity

Brr(z) = E|(Y - f (2))

Err(z) = Bias? + Variance + Irreducible Error
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Most machine learning methods use
regularization to “tune” along the bias-

variance axis

= |asso, ridge regression — penalty parameter (lambda)

» nearest neighbor — n (humber of neighbors to take into account)
» SVM — C (cost)

= decision trees — pruning criteria

» random forests — tree depth

= Often these hyper-parameters are tuned empirically
(be aware of risk when tuning towards test set performance)

U NOVARTIS | Reimagining Medicine
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The bootstrap

= Commonly used flexible and powerful statistical tool that can be used to

guantify the uncertainty associated with a given estimator or Machine learning
method

» For example: deriving confidence intervals on a single parameters

RA2 = 0.58 ¢

ZU
60 X ) magining Medicine



Deriving confidence intervals

If we took many samples from the population, 95% of
the confidence intervals build using those samples would
include the true mean

Draw 100 values
o 0000000000000000
N - \ |
.o Y

Calculate mean ®

Normal_probability_density

Repeat n times
2 0 2 000000
This generates a sampling distribution

Of means ' eimaginin edicine
Slide idea from Matthew E. Clapham ) NOVARTIS | Reimagining Med



Derive quantities of interest from
resampling distribution

800

G00

2.5% percentile / 97'5%
! percentile

200

0.2 0.0 0.2 0.4
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Back to reality ...

We never know the true population parameters, so we cannot apply above’s
method!

We only ever have a single sample!

Lol
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Back to reality (2)

» Bootstrap approach allows us to use a computer to mimic the process of
obtaining independent samples from the population

= \We cannot repeatedly obtain independent data sets from the population, so
instead we obtain distinct data sets by repeatedly sampling observations from
original data set with replacement

» Each bootstrap data set is the same size as our original dataset
— Some observations may appear more than once in a given bootstrap dataset
— Some observation will not appear at all

U NOVARTIS | Reimagining Medicine
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Simple bootstrap example

ID X
2 5
3 2 .
2 5
ID X
ID X
2 5
1 3 ) N _
2 5 " X3
3 2
3 2
ID X >
. X
3 2
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Bootstrapping the single sample we
have

The single sample is the best (and only) information we
have about the population _
Sample values with

replacement
0000000000000000
B
UZ H'Hn H"H'HH_HTH Calculate mean ®
H HH MM A

-2 -1

Repeat n times
000000
This generates a sampling distribution

Of means ' eimaginin edicine
Slide idea from Matthew E. Clapham ) NOVARTIS | Reimagining Med



Inference on bootstrapped resampling
distribution

97.5%
percentile

-0.4 0.2 0.0 0.2 0.4
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Uses of the bootstrapping

= Estimating statistical parameters where data are non-normal

» Estimating parameters that lack a standard calculation (e.g. 95% CI on R-
squared)

» Can also be used to estimate the prediction error
» Essential to the idea of bagging and random forests

» Great to assess the consistency of your methods
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Conclusion and looking back

= We covered a lot
— Overview of machine learning
— Performance measures (2x2, accuracy, TPR, FPR, PPV, NPV, AUC, ...)
— Performance evaluation strategies (hold-out, cross-validation, ...)
— Overfitting / bias-variance tradeoff
— The bootstrap

= Many topics not covered here
— Evaluating multi-class predictions
— Evaluating continuous predictions
— Evaluating multi-dimensional / longitudinal / correlated or grouped predictions
— Learning curves (performance vs. # of training samples)
— Calibration of probabilistic predictions (calibration curves)
— Taking predictors apart to understand (opening the black box)

= Many predictive problems pose hard engineering problems (i.e. in practice) around seemingly simple
concepts (i.e. in theory)

69 U NOVARTIS | Reimagining Medicine



References

» Hastie, Tibshirani — Elements of Statistical Learning
https://web.stanford.edu/~hastie/ElemStatLearn/

= James, Witten, Hastie, Tibshirani - An Introduction to Statistical Learning
https://www.statlearning.com/

20 U NOVARTIS | Reimagining Medicine


https://web.stanford.edu/~hastie/ElemStatLearn/
https://www.statlearning.com/

TYXYRXKYTXETCYTY
AT T AXETRKTY NTY
2 o o 5y b o8/ S 1 gl i o
NT MR T AT AT
AN N T TR
ATYTAYTATAY
AN AT TT
AT TAFTEATLNT
¥ Y AX AT T Y
Jo NN T AT AT
i 2 G S G
KA T A AN
T TALTATT T T
IR N AT A
N RT TN T°F
KXY T RE TAT AT
¥ AT AT TTY
KT LRY TATART
T LRE LA Y
AT R T AN AT
T AL NT T TR
AT ATTAT AT
VX RY LA T
ATYHXAYXYANXY AT
WY AXTCAYTITY
ST TR T AT AT
i S L
AN T A AN
T LA AT T T
AT LRI AT AT
YUV ATTAT-TTY
AY LAL TR YNY
S S S i e e
AT AN AT AT
b i 2 i P YR ) i A o
AT XA TATCAY
B S O e i
ATHERTTAT AT
¥ LAY A TAE T
AKX TAYXTEATAY
LA YA T,T T
AT T AT AT
T YA TATICTY
AX XL CATAY
U AT TAT T T T
LR NN AT
T VAL T AT ETT
AP TR TATYAY
by i ) (e A e () 1

Machine Learning Techniques

d NOVARTIS | Reimagining Medicine



Agenda (continued)

72

Machine Learning techniques

Penalized regression

Trees, Bagging, Random forests, and Boosting
Finding subgroups

Unsupervised learning
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Multiple Linear Regression

= Aim: Modelling of (linear) relationship between outcome and predictors:

Vi = Bo + B1xi1 + -+ BpXip + &
with
— y; (i =1,...,n): outcome
— x;; (k=1,...,p): covariate values for observation i
— o, B1, .-, Bp- regression parameters

— €;. error term / residual

= |east squares solution by mrilnimizing:

1y =XBIE = (v = (Bo + B + -+ Bpcyp))

i=1
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General idea of penalized regression

» Take a multiple linear regression model and add a “penalty term”.

» Penalization of the regression parameters:
=> Not a “full-grown” model anymore

» Advantages:
— Improvement in terms of prediction (making use of the bias variance trade-off).
— Allows estimation of regression parameters in the p>n case.
— It is still a parametric model (no “black box”).
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Ridge regression

Definition:

N

pridee = argmin Z Yi—Bo— Z xijBj | +4 ) B}
1

i=1

p

j=1

2
p

Jj=

n
= argmin{ny — XBII? + AZﬁE}
B i=1

I_'_l

Least Squares part

A controls the weight of the penalty:
- A_)mﬂﬁridgez 0

= ) — 0 ==y gridge — BOLS (=|egst squares estimate)

76
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Shrinkage L,-penalty
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Parameter paths

Ridge solution paths of a linear

regression model

Least Squares estimate (excluding

Coefficients

intercept)isat 4 — 0.

Log Lambda

U NOVARTIS | Reimagining Medicine
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Some notes on ridge regression

* |In the penalty term, S, is not included to make it robust against adding a
constanttermtoy.

=> Center y (or estimate S, by y = %Ziyi) and then estimate the ridge

coefficients.
=> X includes only p columns.

» Scaling of the predictors affects the ridge solutions.
=> Standardize the predictors

\/Zz 1(le fj)z
78 (
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How do we find “the best” 1?

Cross-Validation (e.g. 5-fold)

Shuffled full data set #1 —»

Training set #1 Validation

Shuffled full data set #2 —»

Shuffled full data set #3 —»
Shuffled full data set #4 —

Validation

Validation

Validation

Shuffled full data set #5—>

Validation

Training set #5 |

= For each 1 € {0.001,0.01,0.1,0.5, ..., 10} over some grid of values do the following:
— For each shuffle find solution of min{ || y — XB||?> + AX, B7 } on training set and predict on

validation set.

— Calculate pooled error MSE(1) = || y — XB||? over all validation sets.

= Find A that minimizes the pooled MSE(A).

79
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Ridge regression coefficient estimate

Regression model with 10 covariates:
Vi = Bo + B1xi1 + - + Prox10 T &

Ain = 0.2 B(A=02)
o] 1 ]
™ : // [15]
w ] | s
= ° 7 I %
N (=]
| | O
_ | p
@ — ’
[ [ | I
-2 0 2 4 6 2 0 9 4 5
Log Lambda Log Lambda
Ridge estimate (excluding intercept): B=(-1.66, 1.06, ©.64, )
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Lasso Regression

(Least absolute shrinkage and selection operator)

The Lasso Page

L1i-constrained fitting
for statistics and data mining

(source: http://statweb.stanford.edu/~tibs/lasso.html)
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Lasso Regression (Tibshirani, 1996)

Definition:
N p 2 b
pridse = argmin{ | yi = fo = ) x5 | +2) |5l
p i=1 j=1 j=1

|_'_l
Least Squares part _ "
Shrinkage L{-penalty

n
=al‘g;ninlly —XBII* + 1) Bl
i=1

A controls the weight of the penalty:

. A—)oo‘ﬁlasson

= ) > (0 == plasso — ROLS (=|agst squares estimate)
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Lasso paths

LASSO solution paths of a
linear regression model

Best A found through Cross-validation:

Coefficients

L] » A
2 - P 1 =0.015.
o : L - p1(1)
o T T | | I | |
5 -4 -3 2 1 0 1 2
Log Lambda B=(-1.78, 1.12, 0.65, )

Some parameters will be set to 0. » Variable selection!
U NOVARTIS | Reimagining Medicine
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Summary LASSO & Ridge Regression

= Standardize the predictors and center the response!

» Lasso and Ridge regression make use of the Bias-Variance tradeofft.

= Main advantage of LASSO: variable selection.

= Neither ridge regression nor the lasso will universally dominate the other.
» |If there are only few “true” predictors, LASSO may be the better choice.

» Cross-validation may be used to determine the final model.
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Graphical representation - preparation

Ridge and lasso regression can be written as follows:

» Ridge regression:
argéninlly - XBII*>, st Bl2=C

» Lasso regression:
arg;ninlly - XplI>, st B =C

There is a direct connection between C and A.
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Graphical representation

Contours of || y — XB||? Contours of || y — XB||?
y —_—

LSS0 \\ e N\

V&Y W74y
B, B,
arggmin”y — XBI1? s.t. |BlL < C arg;nin”y — XB||? s.t. |B], <C
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Elastic Net (zou and Hastie, 2005)

BEN = argmin{”y —XBIl1>+ 2
ﬁ L ' )

(1—a>iﬁ,?+ai|ﬂj|n
. "

L J=1

Least Squares part !
Elastic net penalty

» If a = 0 =» Ridge Regression.
" [fa =1 => LASSO.
=>» Do Cross-Validation to find the optimal a € [0, 1].

Main advantage of Elastic Net is that it encourages grouped variable selection
(while e.g. LASSO tends to pick only one variable among correlated variables)
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Some final notes

» Software: R package “gimnet” allows to implement Ridge, Lasso, Elastic Net.

» Extension to generalized linear models in a straightforward way (by adjusting
the likelihood and the link function).

= In case of p>n (more covariates than observations), the OLS estimate cannot
be calculated. Adding a penalty term solves the issue.

= Several other extensions available (group lasso, fused lasso, ...)

= Bayesian interpretation of Lasso by implementing Laplace prior distributions for
the regression coefficients.
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Data example

« Simulated data based on real study data
» Population: Patients with psoriatic arthritis

* Response: American College of
Rheumatology 20 (ACR20) response (binary)

« Two groups: active treatment vs. placebo

» Additional covariates/predictors:

« Patient demographics and other baseline skin
characteristics

« Background characteristics
» Laboratory values

89
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Regression trees

 Set-up: continuous response y and predictors xy, ..., xp.

» Goal: predict the response based on predictors.

« Atree is defined by (several) splits which result in branches.
« Each splitis based on only one variable.

* Result: Predictor space is devided into distinct regions.

* Prediction: “Run” the new observation through the tree. Predict the mean
response value of the |leaf where the observation ends up.
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Regression trees

92

First split is done at

age < 50 vs. >=50

Secon splits are based on
BMI.

The predictions are the
numbers on the top in each
box.
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Regression trees - algorithm

93

Start from the root and go top-down.

Split the data into two branches:

— For each predictor x; (j = 1, ...,p), select the

cut-point that leads to greatest reduction of the
residual sum of squares (RSS).

— Select the predictor with the biggest reduction in
RSS for the split.

Repeat the splitting until some stopping
criteriais met (e.g., each node has fewer
observations than a limit).

15
./ \n=500 \\
age < 50 AN
4 >=50
N
AN
// \\
/// \\
/ N
12 17
n=228 n=272

bmi < 30 bmi < 30

>=30 >= 30
14 19
n=119 n=131
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Classification trees

« Work basically the same way as regression trees.

« Set-up: Categorical response y and predictors xy, ..., Xp,.

» Goal: Predict the response category based on the predictors.
* Create a tree as done before.

* Prediction:
* Run through the tree
» take the most frequent class (mode) in the final leaf
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Classification trees - split criteria

Often used:

Gini index (a measure of total variance across the k classes)
K
G = z Pk (1 — D)
k=1

with P, as proportion of observations in the mth leaf
which belong to the kth category.

Small if the p,,,; are closeto O or 1
(most observations in a leaf belong to the same category)
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Trees - discussion

« Easy to explain and display
« Can handle non-linearity
» Useful for exploratory and explanatory purposes

« Usually not being used as a stand alone predictive
model due to limited prediction accuracy.
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Using an Ensemble of models

As stated above, a single tree does not necessary lead to good predictions.

Combine several trees (or more generally, predictions
‘ based on some function f(x)) and use the average over
the trees for prediction.

= Reduction of the variance

Examples for ensemble methods:

« Bagging
 Random forests
* Boosting

97 U NOVARTIS | Reimagining Medicine



Bagging (Bootstrap Aggregating)

1. Repeatedly sample from training
set.

2. Get single predictor of £*2(x) 1. Sample
from the bth dataset. l l l l
3a. For continuous response, 2. predict
average all the predictors as the
: A 2*b
final fpqq,(x) = % B f (.
3. combine

3b. For categorical response, use
majority vote for classification.
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Bagging Discussion

« Bagging model
* Improves accuracy over prediction of a single tree.
» Hard to interpret the results.

» Important predictors can be identified by checking the impact on RSS or Gini index
or by counting the number of splits which are based on a specific predictor.

« Out-of-bag (OOB) error
» Can be calculated from the predictions based on OOB observations.
» Provides a valid estimate of the test error for the model.
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Random Forest
(Breiman, 2001)

* Follow the same steps as in bagging.

 However add the following additional step:

At each split, randomly choose m predictors out of the full
set of p predictors.

(Usually m is set to /p or log2p.)

» The random choice of predictors avoid strong predictors to
dominate the lower nodes.

U NOVARTIS | Reimagining Medicine

100



Random Forest - discussion

101

Bagging may not reduce the variance enough:
Strong predictors may dominate the lower level of tree and hence induce

correlation among the trees.

Random forest

Random predictor selection as well as bootstrap samples from data.
This helps make the trees less correlated.

If m=p, then random forest is bagging.

Variance importance measures available (to do variables selection)
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Boosting

ldea:
« Sequentially build up a model based on “weak learners”.
* The “ensemble” will create a powerful model.

» Use, for example, trees as learners.

Note the “sequential nature” as compared to bagging and random forests.
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Boosting with trees

« Start with f(x) =0

Start with [
null model

* Incrementally build the ensemble by
training each new model based on the
residuals from the previous model.

« Main tuning parameters: » Fit f* based on data (X, )

*  Number of trees B.

« Shrinkage A controls the learning rate,
typical values: 0.01 or 0.001.

* Number of splits d to control the
complexity of the trees. Whend =1,
each tree is a stump.

Fitatree [REACRSIICREIMC)
per iteration IRy Ad€2)

« f(0) = T AfP(x)
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Boosting - some remarks

104

Boosting comes with great performance in many situations
(mostly greater performance to random forests and bagging).

Many parameters that can be optimized (compared to random forests).

Several variations available:

« AdaBoost (Adaptive Boosting, by Freund and Schapire 1997)
» Stochastic gradient boosting (Friedman, 1999)

» Gradient boosting (Friedman, 2001)
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Summary

» Decision trees are simple and interpretable models for regression and
classification.

« However, they are often not competitive with other methods in terms of
prediction accuracy.

« Bagging, random forests and boosting are good methods for improving the
prediction accuracy of trees. They work by growing many trees on the training
data and then combining the predictions of the resulting ensemble of trees.

« Random forests and boosting are among the state-of-the-art methods for
supervised learning. However their results can be difficult to interpret.
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Overview

« Setting:
* One endpoint variable (for example, binary)
« Two treatment arms (placebo vs. active treatment)
» Several covariates (demographics, lab parameters, etc.)

« Goal: Finding subgroups of an increased treatment effect based on the
covariates
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General procedure

« Identify most influential covariates:
« Test interaction between treatment group and covariates or
* Apply the virtual twins method or
* Implement causal forests.

Do some graphical assessment of potential subgroups: Funnel plot

« Define a subgroups based on a decision tree.
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Data example - reminder

« Patient population: Patients suffering from
psoriatic arthritis.

« Treatment groups: placebo vs. active treatment.

* Endpoint: musculoskeletal endpoint of
American College of Rheumatology (ACR) 20
response (binary).

« Covariates (continuous or binary):
» Patient demographics (age, BMI, etc.)
» Laboratory variables
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Test for interaction with treatment

Procedure;:

» For each covariate: Fit a regression model with the following predictors:
* The treatment group.
* The covariate of interest.
* An interaction term of the two above.

« Test the interaction term for significance.
» Select all variables below a certain threshold (for example, p<0.05).

* Note: This is rather a “univariate” approach!
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Virtual twins
(Foster et al., 2011)

General idea: Create a virtual twin for each patient and
analyze the difference:

» Select all placebo patients and fit a random forest.
» Select all treatment patients and fit a random forest.

* Predict outcomes using both random forests for all
patients (Y; and Y,)

« Take the difference Z = ¥; — Y, and fit another
random forest on Z.
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Causal forests
(Athey et al., 2019)

Fit a random forest to the data (including treatment
group and all covariates).

However, use causal trees:
« They work the same way as “normal” trees.

« However, maximize the difference between
treatment groups in each split.

After applying virtual twins or causal forests use
some variable importance measure to select the
most influential covariates.

112
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Funnel plot

» Visualization / tool to assess if there are any potential subgroups at all.

* ldea:
« Select a set of covariates.
» Build subgroups; in case of continuous covariates use cut-offs.
« Calculate the treatment effect for each subgroup.
« Display all treatment effects in one plot

» Great distances between dots indicate differences in subgroups.
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Data example: Funnel plot

Treatment difference

114

40 60 80

20

-20

-40

0.1

0.2 0.3 04

Information (1/se”2)

0.5

The blue dot represents
the treatment difference
in the overall population.

Potentially interesting
subgroups.
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Data example: selected variables

Let's take the first four
overlapping covariates

(Note: This is just an
ad-hoc solution!)

U) NOVARTIS | Reimagining Medicine

115



Data example: Create the tree

Virtual twins

0.19
n=853

o >= 44 Look at the
treatment effects
n=292 n=561 _ :

BMI >= 34 In the resulting
<34 subgroups

BMI < 28
>=28

0.22 0.31
n=237 n=224
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Supervised vs. unsupervised learning

Supervised learning:
* Outcome variable / response: y = (y4, ..., V)
* Predictors: X" = (X3, ..., X))
» Goal: predict y using X, resulting in .
+ Idea: Minimize some loss function L(y,y), for example, L(y,») = |y — y|?

It is called supervised, because (in some training set) we know .
Predictions for y can be made based on new data (y).

More generally:
« Assume a joint probability density Pr(Y, X).
 We are interested in the properties of Pr(Y|X).
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Supervised vs. unsupervised learning

Unsupervised learning:

We do not have any y variables (no response).
=> \We would like to characterize Pr(X).

What does that mean?

Find patterns.

Find groups of subjects with similar characteristics.
Find associations between variables.

Combine variables to a smaller set of “latent” variables.
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Cluster analysis

« Goal: Identify groups or “clusters” of subjects.
» Subjects within the same clusters are supposed to be “similar”.
» Subjects from different clusters are supposed to be “different”.

» How do we identify clusters (what does “similar’ mean)?
« Similarity is based on X (usually all variables in the data set).
 We need some distance measure.

» Different distance measures lead to different results

« Whatis this useful for?
» Descriptive analysis of your (patient) population.
« Identification of subgroups with different characteristics.
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Two-dimensional example

121

X2

X4

Goal: Find groups of
observations which
are “similar”.

U NOVARTIS | Reimagining Medicine



Two-dimensional example

122

X2

X4

Goal: Find groups of
observations which
are “similar”.
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Degree of similarity

To identify similar patients, we need to define similarity.

Pairwise definition for subjects i and i':
p
D(xl-,x{) = z dj(xl-j,xl-rj)
j=1

Most common choice is the
Euclidean distance:
2
dj(xijrxi’j) = (xij — xi’j)

in case of quantitative (continuous) variables.
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Degree of (dis)similarity
Alternative definitions (examples)

Continuous variables:

di(xijxprj) = loij — x5

Ordinal variables: replace the M categories with

i—1/2 ,
YR i=1,...M
and treat them as continuous variables.
Nominal variables:
1 xij == xi’j

d. x..’x_,. — )
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Degree of (dis)similarity
Some additional remarks

« Weights can be added to the dissimilarity measure:
p p
D(xl-,x{) =ZWJ -dj(xij,xl-rj); zW] =1
j=1 J=1

» Choice of the dissimilarity measure seems to be more important than the
clustering algorithm.
» Distance measures should be chosen wisely.

* Clinical input may be very helfpul.
* Using equal weights to all variables (w; = 1/c?j) may not always be the best choice.

U NOVARTIS | Reimagining Medicine
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Clustering algorithm: kmeans

Assumptions:
* Only continuous variables
» Euclidean distance as dissimilarty measure

Thus, we would like to minimize “within cluster” point scatter:
K

o= NS ey

k=1 c()=k c(iH=k j=1

C (i) = k assigns observation i to cluster k.
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Clustering algorithm: kmeans

The algorithm looks as follows:

1. Given a set of clusters, find the mean of each cluster to minimize the variance
within the cluster around that mean.

2. Given these means, assign each observation to the cluster with the closest
mean.

3. Repeat steps 1 and 2 until there is no change.
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Animated visualization

Step: 1
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Some remarks on /smeans

129

Computationally simple, but very expensive. = Greedy descent algorithms
are being implemented.

We need to decide on k and start with initial values (e.g., random values).

How to choose k?
« Sometimes defined by research question.
« Use W(C) as a criterion. However, it will always decrease with increasing k.

« Stop, for example, if the decrease gets sufficiently small (use for example the Gap
statistic (Tibshirani, 2001)).
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Extensions and other algorithms

* Include categorical data by:
» using some recoding (dummy coding) or preferably by
 adjusting the dissimilarity measure (for example, Gower distance)

» Hierarchical clustering (do the clustering in hierarchical steps)

» k-medoids using actual data points as center of clusters (commonly used
algorithm: Partitioning Around Medoids (PAM)).

« Self organizing maps. ldea:
* Projection to a low-dimensional space (similar to principal component analysis).
» Finding clusters on this low-dimensional space.
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References
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Additional references can be found on the next slide.
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