

Graphical Approaches to Multiple Test Problems

Ekkehard Glimm, Frank Bretz (Novartis) & Dong Xi (Gilead) Basel Biometric Society – March 29, 2022

Our housekeeping

- Event will be recorded
- Presentations & recording will be made available to the audience
- Please mute yourself (

unless you are speaking

- After each presentation we will have time for questions
- Please enter your questions into the chat during the talk or raise your hand during the Q&A to ask your question.
- In case of any problems during the event, please contact <u>bibiana.blatna@novartis.com</u>

Disclaimer

The views expressed in this presentation are those of the presenters and do not necessarily represent the views of, and should not be attributed to, the presenters' affiliations.

Agenda

14:00 – 14:45	Introduction to multiple testing Dong Xi	
14:45 – 16:15	Graphical approaches to multiple testing Frank Bretz	
Break		
16:30 – 17:30	Extensions to group sequential designs Ekkehard Glimm	
17:30 – 18:00	Extensions to pooled analyses from two studies Dong Xi	

Learning objectives

- Learn about advanced problems of multiplicity in drug development
- Get familiar with the closed test procedure, a general construction method for multiple test problems
- Be able to tailor advanced multiple test procedures to given study objectives, and to visualize and implement the graphical approaches

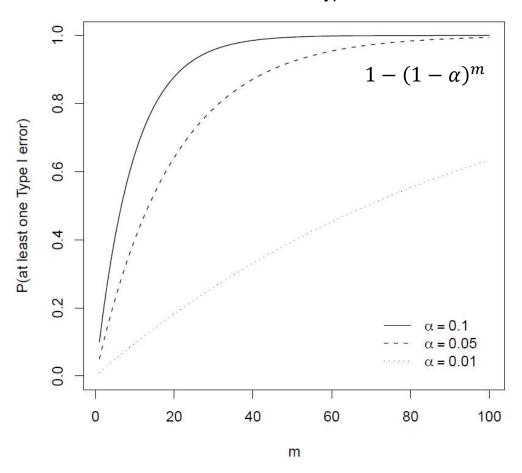
Agenda

14:00 – 14:45	Introduction to multiple testing Dong Xi			
14:45 – 16:15	Graphical approaches to multiple testing Frank Bretz			
Break				
16:30 – 17:30	Extensions to group sequential designs Ekkehard Glimm			
17:30 – 18:00	Extensions to pooled analyses from two studies Dong Xi			

Type I error rate inflation

Test m independent hypotheses

Probability of at least one Type I error for different numbers of hypotheses m



- Probability of making Type I error increases as m or α increases
- For large m we almost surely reject incorrectly at least one of the true null hypotheses

Sources of multiplicity

- Multiple test problems are very common in clinical trials, such as the comparsion of a new treatment with
 - Several other treatments
 - A control for more than one endpoint
 - A control for more than one population
 - A control repeatedly in time
- Clinical trials often face several sources of multiplicity at the same time
- Target: To control the familywise error rate (FWER)
 Pr(reject at least one true null) ≤ α under any configuration of true/false null hypotheses

Common multiple test procedures

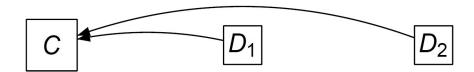
	Correlations		
	Without		With
Single Step	Bonferroni	Simes	Dunnett
Stepwise	Holm	Hochberg	Stepdown Dunnett

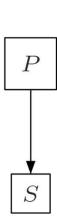
- All these methods treat the hypotheses as equally important
- Remarks on the performance of the procedures
 - Stepwise methods are more powerful than single step methods
 - Single step methods use the same critical values for all hypotheses whereas stepwise methods use different critical values
 - Simes-based methods are more powerful than Bonferronibased methods
 - Accounting for correlations could lead to more powerful procedures

An advanced clinical trial example in COPD

Late phase development of a new compound: Background

- Objective: Show that a new drug is better than a control drug in patients with chronic obstructive pulmonary disease (COPD) for two endpoints
 - Primary endpoint: FEV1 (forced expiratory volume in one second)
 - Continuous variable, where larger values indicate better efficacy
 - Secondary endpoint: Time to exacerbation
 - Time until the event of interest has been observed
- New drug is available at two doses D_1 , D_2 that are compared with the control C

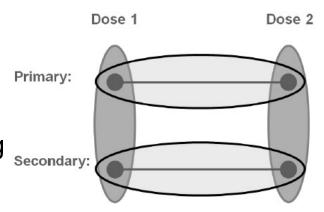




An advanced clinical trial example in COPD

Late phase development of a new compound: Hypotheses

- Two sources of multiplicity
 - Comparing two doses with control for each of two endpoints
- Resulting in four hypotheses of interest
 - Two primary hypotheses H_1 , H_2 (comparing D_1 , D_2 with C for FEV1)
 - Two secondary hypotheses H_3 , H_4 (comparing D_1 , D_2 with C for time to exacerbation)
- Note that the four hypotheses are not equally important
 - The secondary hypothesis H_3 (H_4) should be tested, only if the corresponding primary hypothesis H_1 (H_2) is rejected



An advanced clinical trial example in COPD

Late phase development of a new compound: Summary

- Need for suitable multiple test procedures
- Standard multiple test procedures could be applied, but do not reflect the relative importance of the two endpoints
 - For example, the Bonferroni test would treat FEV1 and time-toexacerbation as equally important, in contrast to their relative order
- We need a multiple test procedure that reflects the relative importance of the hypotheses, as driven by clinical considerations

Summary

- Testing multiple hypotheses may lead to an inflation of the Type I error rate
 - That is, testing individual hypothesis at level α leads to overall Type I error rate larger than α
- Multiple test problems are very common in clincial trials and multiplicity adjustment should always be considered
- Common multiple test procedures treat all hypotheses equally and do not address the underlying structure of the test problem

Notation

- Assume a "family" of m inferences
- Parameters of interest are $\theta_1, \dots, \theta_m$
- Individual null hypotheses

$$H_1: \theta_1 = 0, ..., H_m: \theta_m = 0$$

- Individual test statistics t_1, \dots, t_m with unadjusted p-values p_1, \dots, p_m
- Ordered p-values $p_{(1)} \le p_{(2)} \le \cdots \le p_{(m)}$
- Ordered null hypotheses according to ordered p-values $H_{(1)}, \dots, H_{(m)}$

Closed test procedure (CTP)

Operational definition for m=2 null hypotheses

• Schematic diagram for m=2 null hypotheses H_1, H_2

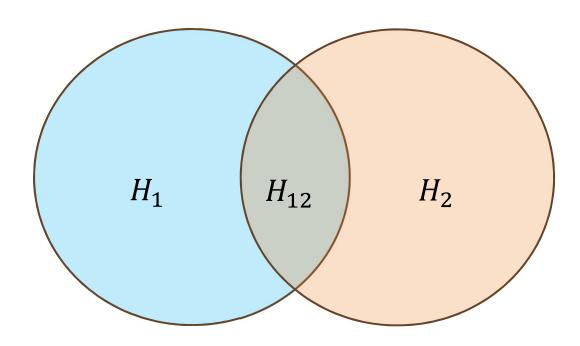
$$H_{12} = H_1 \cap H_2$$

$$H_1 \qquad \qquad H_2$$

- Rejection rule: Reject H_1 (H_2), only if both H_1 (H_2) and H_{12} are rejected, each at local level α
- Operationally
 - Test H_{12} at local level α (using a suitable test): If rejected, proceed; otherwise stop
 - Test H_1 and H_2 each at local level α : Reject H_1 (H_2) overall if H_{12} and H_1 (H_2) are rejected locally
- This controls FWER as $P(\text{at least one rejection}) \leq P(\text{reject the global null}) \leq \alpha$

Closed test procedure

Venn-type diagram for m=2 null hypotheses

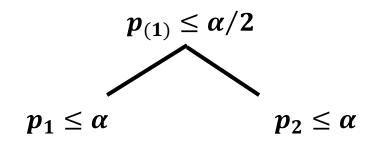


- Different parts indicate different null hypotheses as shown above
- Question: How do we test them?
 - Test H_{12} using Bonferroni, Simes, Dunnett, etc. at level α
 - Test H_1 , H_2 each using a level α test

CTP using Bonferroni

Holm procedure

- Using Bonferroni to test H_{12} , reject if $p_1 \le \alpha/2$ or $p_2 \le \alpha/2$, i.e., if $p_{(1)} \le \alpha/2$
- If we fail to reject H_{12} , stop as neither H_1 or H_2 can be rejected according to the CTP



- If we reject H_{12} , then
 - $H_{(1)}$ is rejected automatically as $p_{(1)} \le \alpha/2 < \alpha$
 - we only need to test $H_{(2)}$ at level α , i.e., reject $H_{(2)}$ if $p_{(2)} \leq \alpha$
- This results exactly in the Holm procedure

CTP using Simes

Hochberg procedure

- Using Simes to test H_{12} , reject if $p_{(1)} \le \alpha/2$ or $p_{(2)} \le \alpha$
- If we fail to reject H_{12} , stop
- If we reject H_{12} because $p_1 \le \alpha$ $p_{(2)} \le \alpha$, then $H_{(1)}$, $H_{(2)}$ are rejected automatically as $p_{(1)} \le p_{(2)} \le \alpha$, and stop
- If we reject H_{12} because $p_{(1)} \le \alpha/2$ but $p_{(2)} > \alpha$, we then reject $H_{(1)}$ but fail to reject $H_{(2)}$ and stop

 $p_{(1)} \leq \alpha/2 \text{ or } p_{(2)} \leq \alpha$

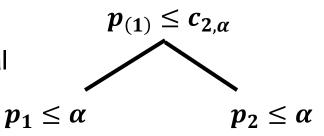
 $p_2 \leq \alpha$

- This results exactly in the Hochberg procedure for m=2
 - For m>2 the Hochberg procedure is less powerful than the CTP using Simes tests

CTP using Dunnett

Stepwise Dunnett test

- Using Dunnett test to test H_{12} , reject if $p_1 \leq c_{2,\alpha}$ or $p_2 \leq c_{2,\alpha}$, i.e., if $p_{(1)} \leq c_{2,\alpha}$
 - $c_{2,\alpha}$ ($\alpha/2 \le c_{2,\alpha} \le \alpha$) denotes the critical value for the Dunnett test to compare two treatment with a control



- If we fail to reject H_{12} , stop
- If we reject H_{12} , then
 - $H_{(1)}$ is rejected automatically as $p_{(1)} \le c_{2,\alpha} \le \alpha$
 - we only need to test $H_{(2)}$ at level α , i.e., reject $H_{(2)}$ if $p_{(2)} \leq \alpha$
- This results exactly in the stepwise Dunnett procedure

CTP using weighted Bonferroni (1)

Fixed sequence procedure

- Two ordered hypothese $H_1 \rightarrow H_2$
- Using weighted Bonferroni test to test H_{12} , reject if $p_1 \le \alpha$ or $p_2 \le 0$
- If we fail to reject H_{12} , stop $p_1 \leq \alpha$ $p_2 \leq \alpha$

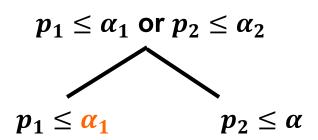
 $p_1 \leq \alpha \text{ or } p_2 \leq 0$

- If we reject H_{12} , then
 - H_1 is rejected automatically as $p_1 \leq \alpha$
 - we only need to test H_2 at level α , i.e., reject H_2 if $p_2 \leq \alpha$
- This results exactly in the fixed sequence procedure

CTP using weighted Bonferroni (2)

Fallback procedure

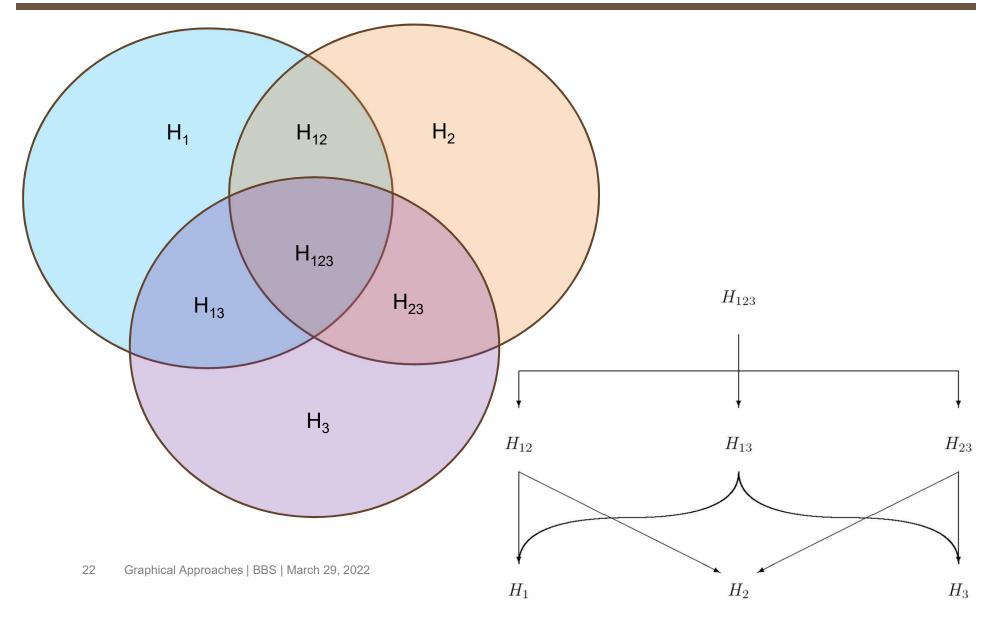
- Two ordered hypothese $H_1 \rightarrow H_2$
- Using weighted Bonferroni test to test H_{12} , reject if $p_1 \le \alpha_1$ or $p_2 \le \alpha_2$
 - For the weights, $\alpha_1 + \alpha_2 = \alpha$



- If we fail to reject H_{12} , stop
- If we reject H_{12}
 - Because $p_1 \le \alpha_1$, then H_1 is rejected automatically and H_2 is tested at level α
 - Because $p_2 \le \alpha_2$, then H_2 is rejected at level α and H_1 is tested at level α_1
- This results exactly in the fallback procedure

Closed test procedure

Venn-type diagram for m=3 null hypotheses



Closed test procedure

Formal definition for m null hypotheses

- For m > 2 many intersection hypotheses have to be tested
- CTP considers all intersection hypotheses

$$H_J = \bigcap_{i \in J} H_i$$
, $J \subseteq \{1, ..., m\}$

- Any suitable test can be used to test H_I at local level α
- An individual H_i is rejected at level α if all hypotheses H_J formed by intersection with H_i are rejected at local level α
- This controls FWER as $P(\text{at least one rejection}) \leq P(\text{reject the global null}) \leq \alpha$
- CTPs satisfy certain optimality criteria and there is no reason why not to use a CTP

Summary

- CTP is a general principle to construct powerful multiple test procedures
- In a CTP, one rejects an individual null hypothesis H_i at overall level α by rejecting all intersection null hypotheses $H_I \subseteq H_i$, including $J = \{i\}$
- Many common multiple test procedures are CTP, including
 - Holm, Hochberg, step-down Dunnett, ...
- The number of intersection hypotheses is $2^m 1$
 - For large m, this number increases rapidly and CTPs are in general difficult to apply

Any questions?

Agenda

14:00 – 14:45	Introduction to multiple testing Dong Xi			
14:45 – 16:15	Graphical approaches to multiple testing Frank Bretz			
Break				
16:30 – 17:30	Extensions to group sequential designs Ekkehard Glimm			
17:30 – 18:00	Extensions to pooled analyses from two studies Dong Xi			

Outline

- Graphical approaches to multiple testing
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example revisited

Outline

- Graphical approaches to multiple testing
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example revisited

Heuristics

- As before,
 - Null hypotheses H_1, \dots, H_m
 - Initial allocation of the significance level $\alpha_1 + \cdots + \alpha_m = \alpha$
 - Unadjusted p-values p_1 , ..., p_m

α-propagation

If a hypothesis H_i can be rejected at level α_i (i.e. $p_i \leq \alpha_i$), reallocate its level α_i to the remaining, not yet rejected hypotheses (according to a prefixed rule) and continue testing with the updated α levels

Conventions

1 Hypotheses H_1, \ldots, H_m represented as nodes

 (H_2)

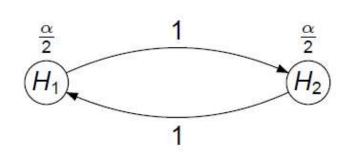
② Split of significance level α as weights $\alpha_1, \ldots, \alpha_m$

Bonferroni H_1

 $\frac{\frac{\alpha}{2}}{H_2}$

 \odot " α propagation" through weighted, directed edges

Holm



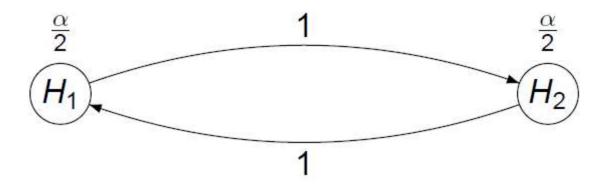
Outline

- Graphical approaches to multiple testing
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example revisited

Bonferroni test and Holm procedure: m=2

Bonferroni: no α -propagation, i.e. no edges between nodes

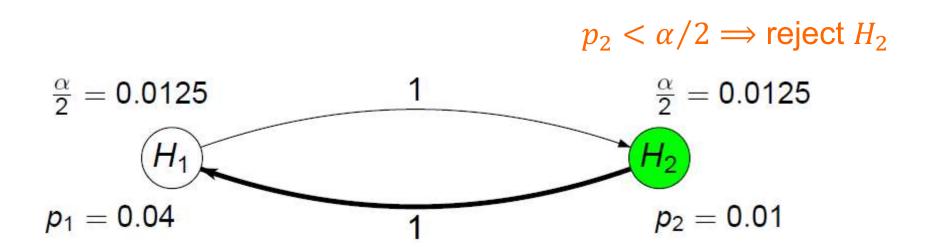
• Holm: includes α -propagation and is thus more powerful



Holm procedure: Example with $\alpha = 0.025$

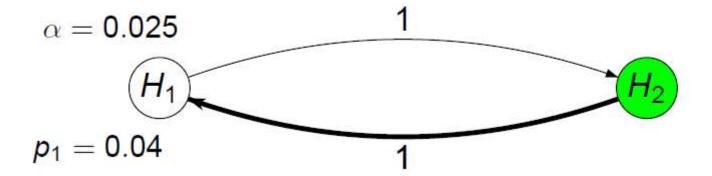
Test H_1 at level $\alpha/2$ $\frac{\alpha}{2} = 0.0125$ H_1 $p_1 = 0.04$ Test H_2 at level $\alpha/2$ $\frac{\alpha}{2} = 0.0125$ H_2 $p_2 = 0.01$

Holm procedure: Example with $\alpha = 0.025$



Holm procedure: Example with $\alpha = 0.025$

Propagate $\alpha/2$



Holm procedure: Example with $\alpha = 0.025$

Remove node for H_2

$$\alpha = 0.025$$

$$p_1 = 0.04$$

Holm procedure: Example with $\alpha = 0.025$

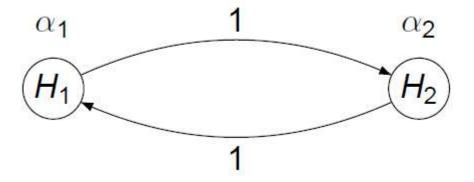
Test H_1 at level α $p_1 > \alpha \implies$ retain H_1 and stop

 $\alpha = 0.025$

 $p_1 = 0.04$

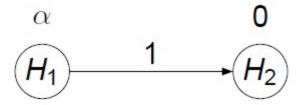
Weighted Holm procedure

• Use α_1 , α_2 with $\alpha_1 + \alpha_2 = \alpha$ instead of $\alpha_1 = \alpha_2 = \alpha/2$

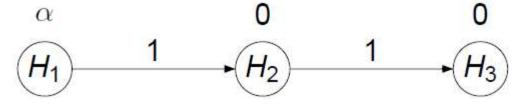


Fixed sequence test

- Assume $H_1 \rightarrow H_2$
 - That is, m=2 and H_1 is more important than H_2
 - Then the fixed sequence procedure is visualized as



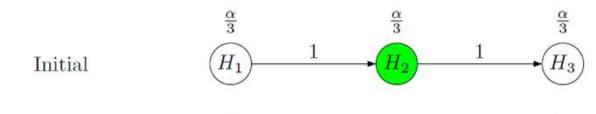
- Similarly, assume for m=3 that $H_1 \rightarrow H_2 \rightarrow H_3$
 - Then the fixed sequence procedure is visualized as



• Caution: If H_1 cannot be rejected, we cannot test H_2 , H_3 regardless of their p-values

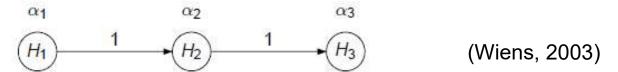
Fallback procedure

- Assume $H_1 \rightarrow H_2 \rightarrow H_3$, and split the significance level as $\alpha_1 = \alpha_2 = \alpha_3 = \alpha/3$
- Following the fallback procedure, we could have for example:



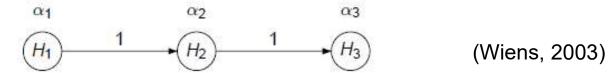
Improved fallback procedures

Original fallback

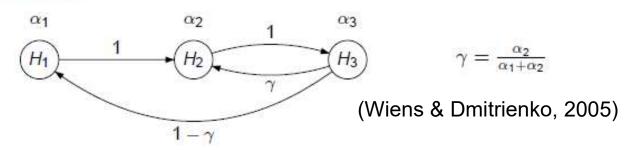


Improved fallback procedures

Original fallback

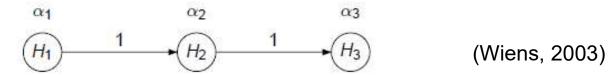


Improved fallback I

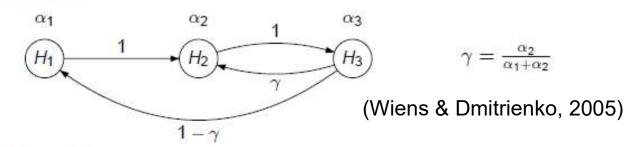


Improved fallback procedures

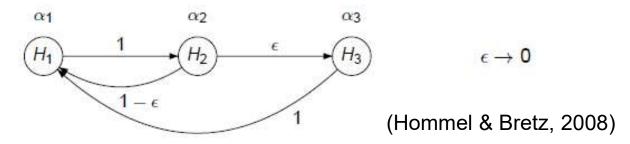
Original fallback



Improved fallback I

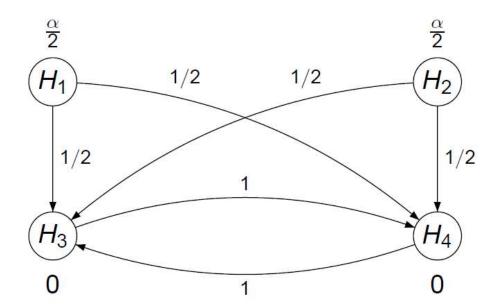


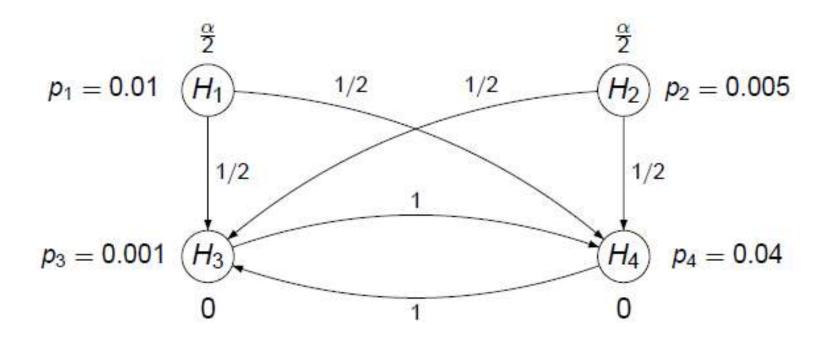
Improved fallback II

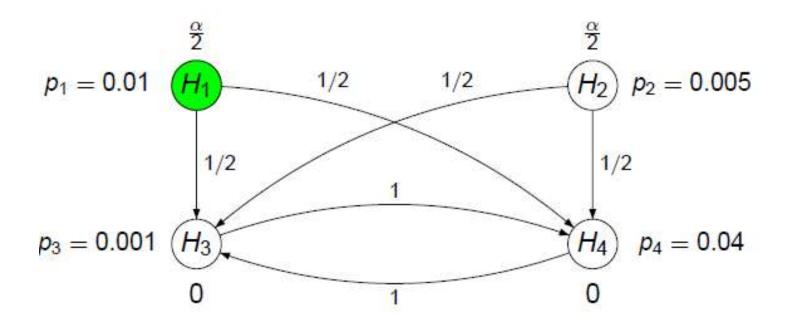


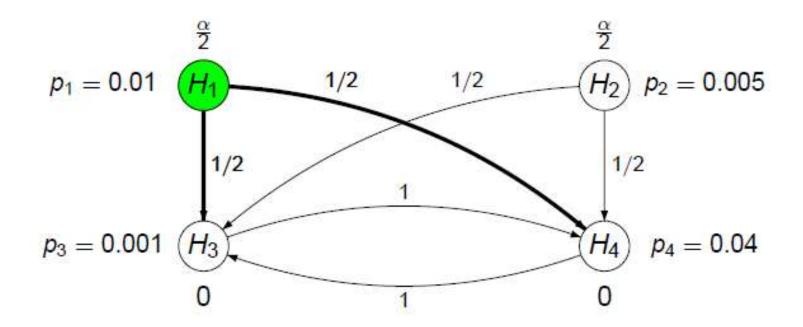
Parallel gatekeeping procedure (Dmitrienko et al., 2003)

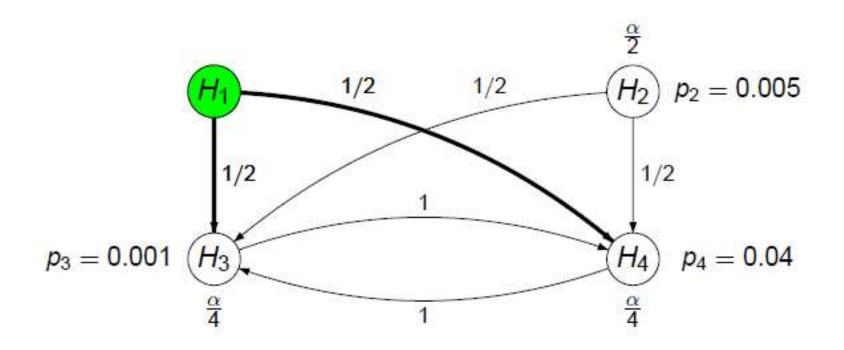
- H₁, H₂ are two primary hypotheses
 - · For example, comparison of a new drug with placebo for two primary endpoints
- H_3 , H_4 are two secondary hypotheses
 - For example, comparison of a new drug with placebo for two secondary endpoints
- Parallel gatekeeping: Testing of secondary hypotheses occurs if at least one of the primary hypotheses is rejected

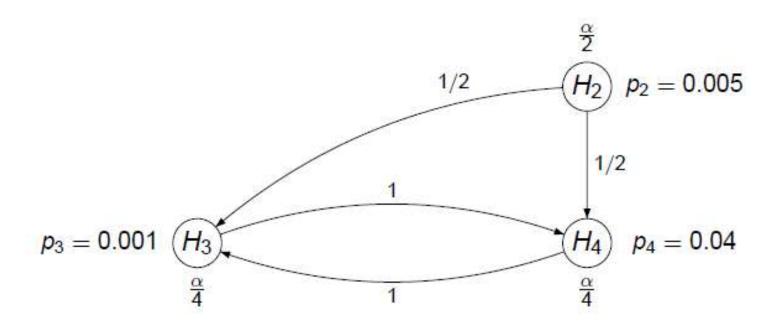


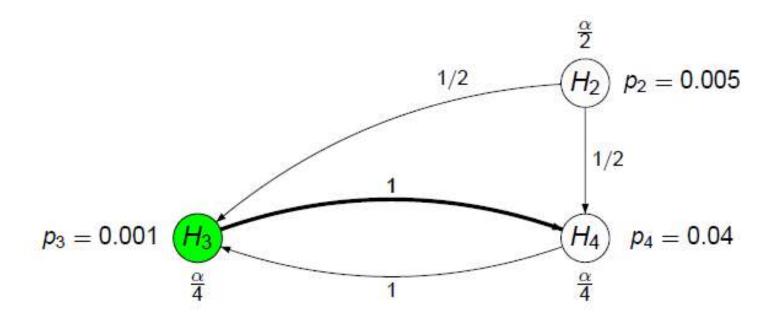


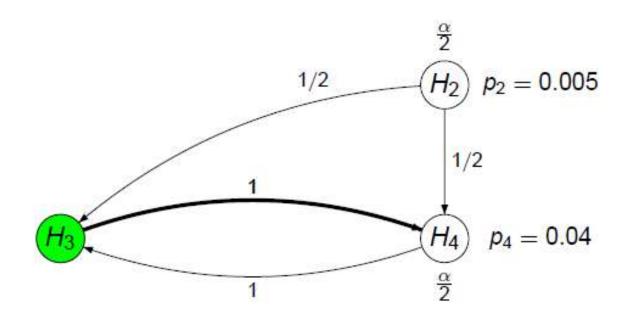


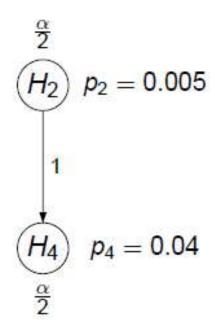


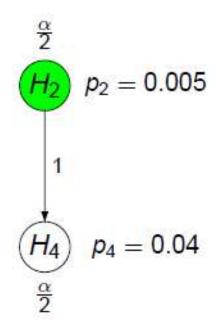


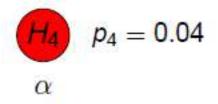












Outline

- Graphical approaches to multiple testing
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example revisited

Formal definition

Define

- Initial levels $\alpha = (\alpha_1, ..., \alpha_m)$ with $\sum_{i=1}^m \alpha_i = \alpha \in (0,1)$
- $m \times m$ transition matrix $\mathbf{G} = (g_{ij})$

where g_{ij} is the fraction of the level of H_i that is propagated to H_j with $0 \le g_{ij} \le 1$, $g_{ii} = 0$, and $\sum_{j=1}^{m} g_{ij} \le 1$, $\forall i = 1, ..., m$

• (G, α) determine a graph with an associated multiple test

Update algorithm

Set
$$J = \{1, ..., m\}$$

- 1 Select a j such that $p_j \le \alpha_j$ If no such j exists, stop; otherwise reject H_j
- Output
 Update the graph:

$$J \to J \setminus \{j\}$$

$$\alpha_{\ell} \to \begin{cases} \alpha_{\ell} + \alpha_{j} g_{j\ell}, & \ell \in J \\ 0, & \text{otherwise} \end{cases}$$

$$g_{\ell m} \to \begin{cases} \frac{g_{\ell m} + g_{\ell j} g_{j m}}{1 - g_{\ell j} g_{j \ell}}, & \ell, m \in J, \ell \neq m, g_{\ell j} g_{j \ell} < 1\\ 0, & \text{otherwise} \end{cases}$$

Go to Step 1

Main result

• The initial levels α , the transition matrix G, and the algorithm define a unique sequentially rejective test procedure that controls the FWER at level α

Remarks:

- Any multiple test procedure derived and visualized by a graph (G, α) is based on the closed test principle
- The graph (G, α) and the algorithm define weighted Bonferroni tests for each intersection hypothesis in a CTP
- The algorithm defines a shortcut for the resulting CTP, which does not depend on the rejection sequence

Outline

- Graphical approaches to multiple testing
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example revisited

Background

- Objective: To demonstrate that either dose D₁ or D₂ of a new drug is better than control C in COPD patients for two endpoints
 - Primary endpoint: FEV1
 - Secondary endpoint: Time to exacerbation
- There is a natural order in that a primary endpoint is more important than a secondary endpoint
 - Thus, we would like to test the primary null hypothesis first; only if that is rejected, we test the secondary hypothesis
- Both doses are equally important
 - Thus, both doses are simultaneously tested against the control

Building a multiple test procedure: Hypotheses

primary

 H_2

secondary

 H_4

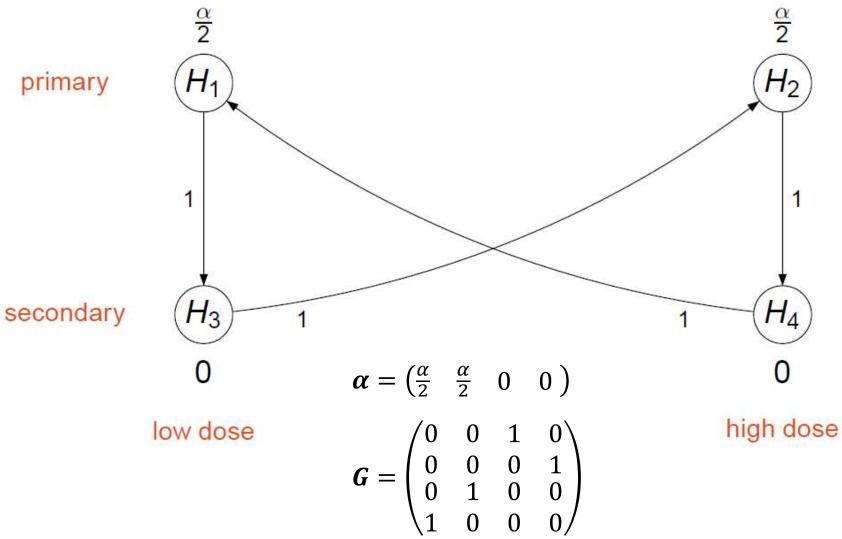
low dose

high dose

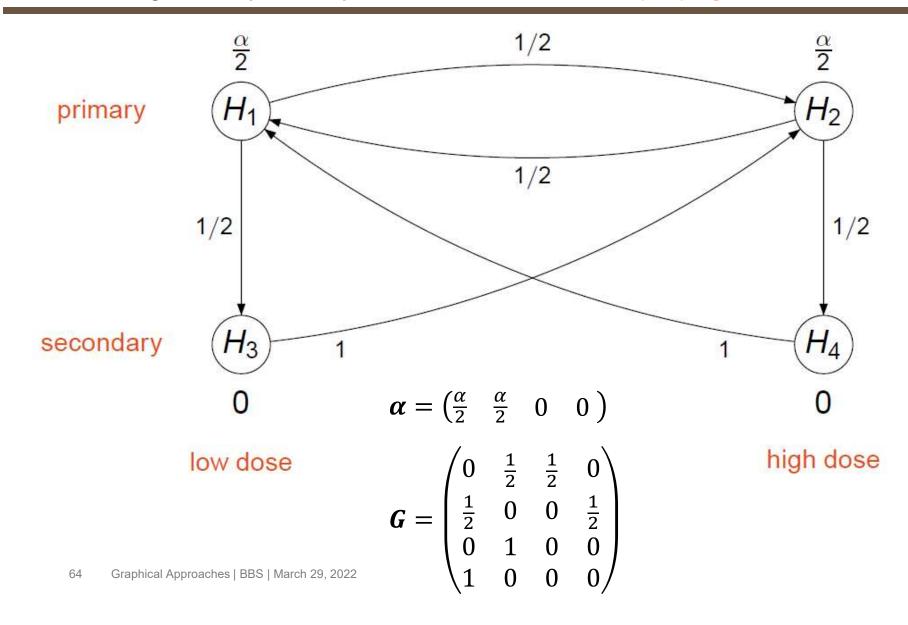
Building a multiple test procedure: Initial levels α

primary H_1

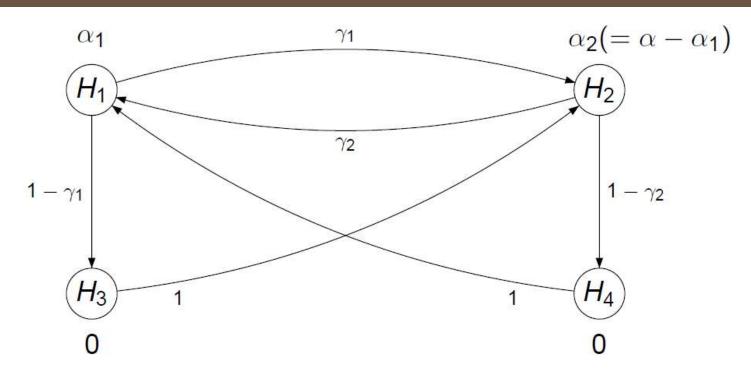
Building a multiple test procedure: α -propagation



Building a multiple test procedure: Alternative α -propagation



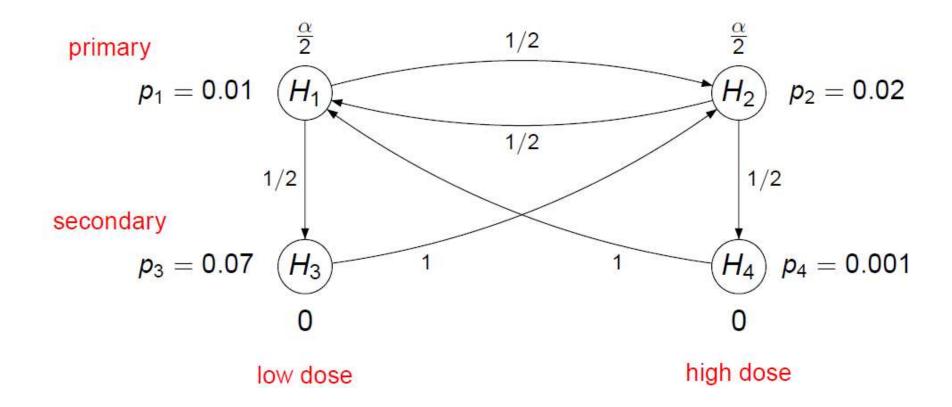
Building a multiple test procedure: General solution

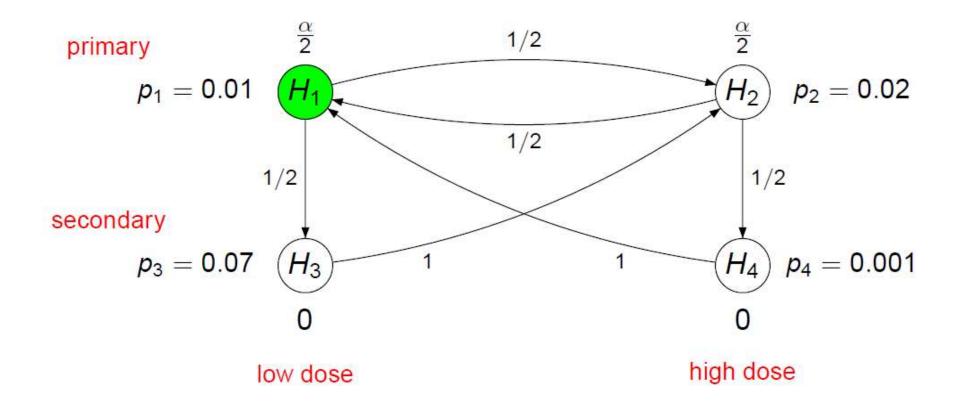


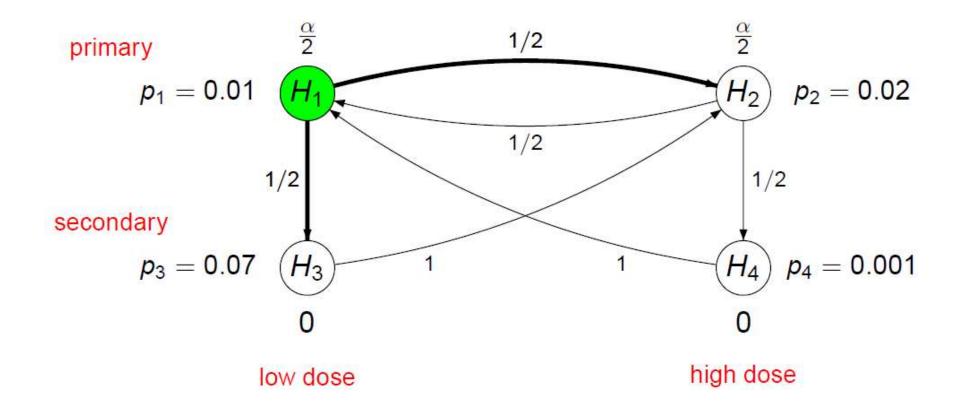
$$\alpha = (\alpha_1 \quad \alpha_2 \quad 0 \quad 0)$$

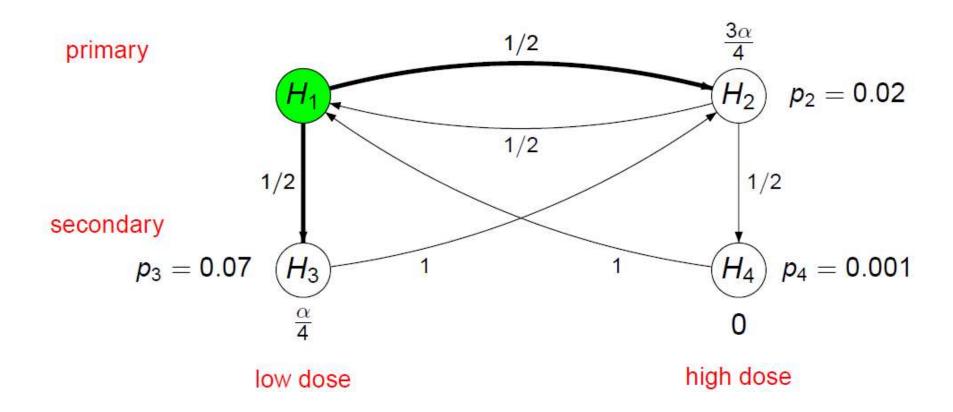
$$\boldsymbol{G} = \begin{pmatrix} 0 & \gamma_1 & 1 - \gamma_1 & 0 \\ \gamma_2 & 0 & 0 & 1 - \gamma_2 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

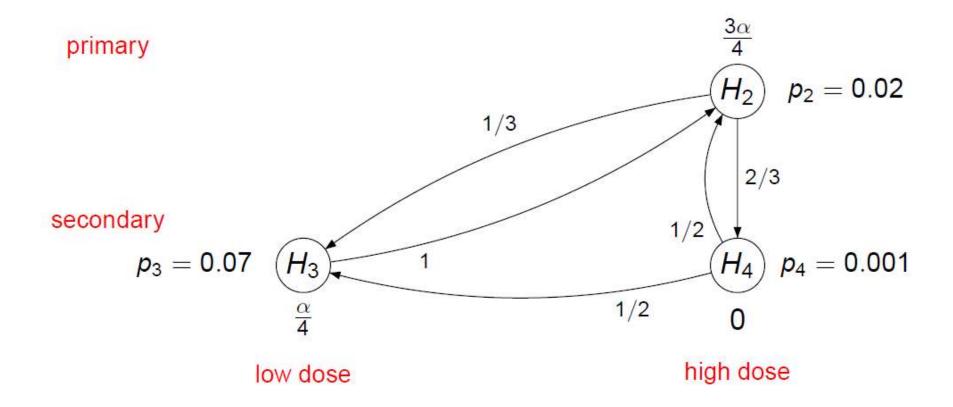
- Resulting graph depends on only three parameters α_1 , γ_1 , and γ_2 that can be finetuned based on:
 - further clinical considerations, or
 - assumptions about effect sizes, correlations, ...

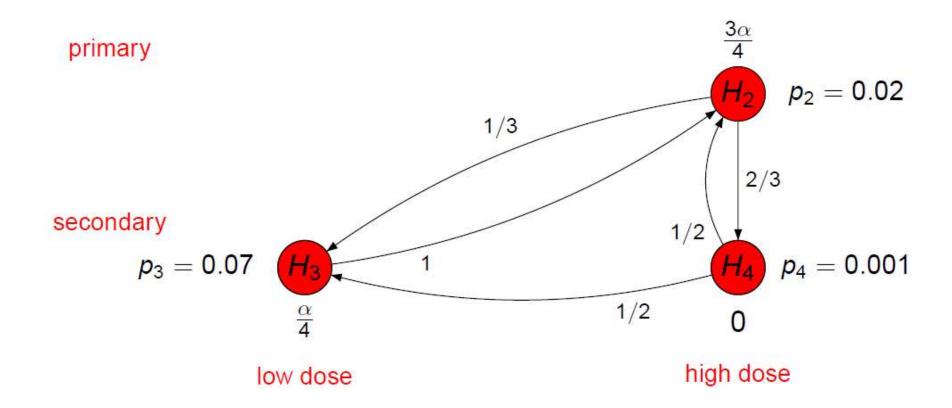












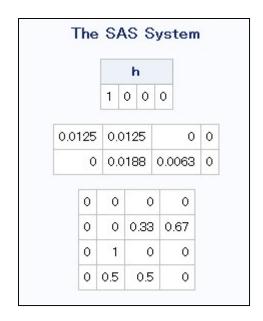
SAS: Main function

```
/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 x n vector)
   a: initial significance level allocation (1 x n vector)
   g: weights for the edges (n x n matrix)
   p: observed p-values (1 x n vector) */
START mcp(h, a, g, p);
   n = NCOL(h);
   mata = a;
    crit = 0;
    DO UNTIL (crit = 1);
        test = (p < a);
        IF (ANY(test)) THEN DO;
            rej = MIN(LOC(test#(1:n)));
           h[rej] = 1;
            g1 = J(n, n, 0);
            DO i = 1 TO n;
                a[i] = a[i] + a[rej]*g[rej,i];
                IF (q[i,rej]*q[rej,i]<1) THEN DO j = 1 TO n;
                    q1[i,j] = (q[i,j] + q[i,rej]*q[rej,j])/(1 - q[i,rej]*q[rej,i]);
                END:
                q1[i,i] = 0;
            g = g1; g[rej,] = 0; g[,rej] = 0;
            a[rej] = 0;
            mata = mata // a;
        END:
        ELSE crit = 1;
    END:
    PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(g, 0.01));
FINISH:
72
```

COPD example revisited

SAS: Example call

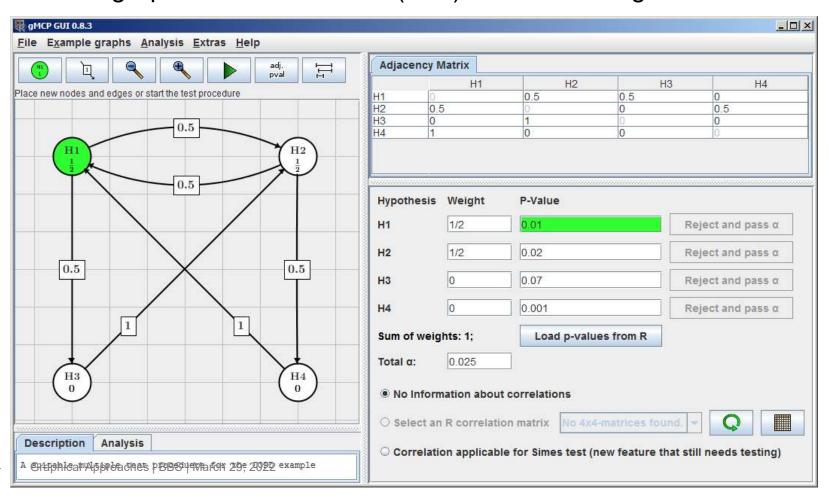
```
PROC IML;
START mcp(h, a, g, p);
. . . . . .
FINISH;
/*** Numerical example ***/
h = \{ 0 \}
                                  } ;
a = \{0.0125 \ 0.0125 \ 0
g = \{0
             0.5
                      0.5 0
                            0.5 ,
      0.5
      0
p = \{0.01 \quad 0.02 \quad 0.07 \quad 0.001\};
RUN mcp(h, a, g, p);
QUIT;
```



COPD example revisited

R: gMCP package

- Open source package at http://cran.r-project.org/web/packages/gMCP/
- Provide graphical user interface (GUI) within R through JAVA



Summary

- The graphical approach offers the possibility to
 - Tailor advanced multiple test procedures to structured families of hypotheses reflecting clinical considerations
 - Visualize complex decision strategies in an efficient and easily communicable way, and
 - Ensure strong FWER control
- The approach covers many common multiple test procedures as special cases
 - Holm, fixed sequence, fallback, ...

Graphical Approach Summary

- Extensions available to address other problems
 - Adjusted p-values and simultaneous confidence intervals available
 - Power considerations
 - Weighted and trimmed Simes tests
 - Weighted parametric test procedures to exploit correlation
 - Families of hypotheses
 - Convex combination of graphs to introduce "memory" (including truncated procedures)
 - Group-sequential and adaptive designs
 - Symmetric graphs (including Hochberg procedure)
 - Graphical test procedures controlling generalized error rates

Any questions?

Agenda

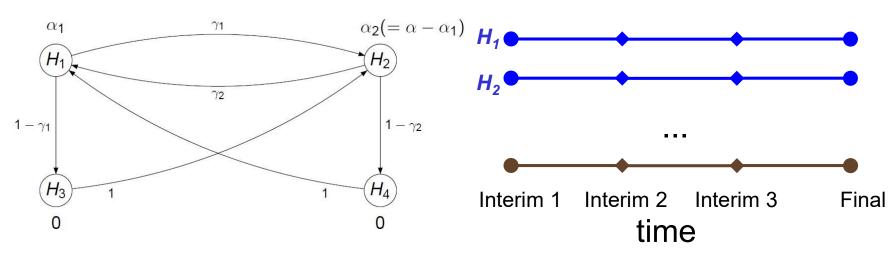
14:00 – 14:45	Introduction to multiple testing Dong Xi
14:45 – 16:15	Graphical approaches to multiple testing Frank Bretz
	Break
16:30 – 17:30	Extensions to group sequential designs Ekkehard Glimm

Problem Statement

Combine multiplicity adjustment for multiple endpoints, multiple treatment arms, multiple subpopulations, ...

with

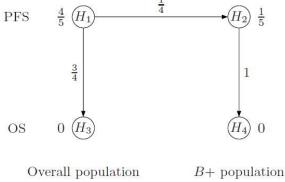
repeated testing in the framework of a group-sequential design.



General principle we will follow

Top layer:
 Design the multiplicity-adjustment method ignoring repeated testing for the moment

• E.g. the graphical procedure PFS



Bottom layer:

Devise an alpha-spending approach for the hypotheses and all α -levels which occur in the closed test procedure.

(Xi, Glimm, Bretz, 2016)

Short recap of group-sequential testing

- Hypothesis H_0 is tested repeatedly in time at times I_1, \dots, I_F .
- H_0 will be rejected if $t_i \ge c_i$ (or alternatively if $t_i \le c_i$) at at least one time I_i
 - t_i is observation of test statistic T_i (e.g. a t-test statistic or a p-value) calculated from the data available up to time I_i
 - c_i are critical values fulfilling $P_{H_0}(T_1 \ge c_1 \text{ or } T_1 \ge c_1 \text{ or } ... T_F \ge c_F) \le \alpha$
- Repeated testing poses a multiplicity problem, but there is just one hypothesis, so decision space is much simpler (H₀ is either true or false).

Short recap of group-sequential testing

- "Time" in this context refers to information time
 - In "conventional" trials: number of patients recruited
 - In time-to-event trials: number of events accrued
 - In general: information fraction, ratio of variance of parameter estimate at interim and final
- Very common assumption ("canonical distribution"):
 - i. T_1, \dots, T_F are multivariate normal
 - ii. $T_i \sim N(\sqrt{I_i}\theta, 1)$
 - *iii.* $corr(T_i, T_j) = \sqrt{I_i/I_j}$ for $i \le j$

holds asymptotically under relatively mild assumptions (Scharfstein et al., 1997; Jennison and Turnbull, 1997), e.g. for ML-estimates.

Short recap of group-sequential testing

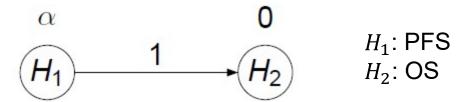
- Typically, we know $I_1, ..., I_F$ in advance
 - e.g. we planned IAs after 50, 100 and 200 patients
- Or we can condition on their observations
 - e.g. we plan IAs after 6, 12 and 24 months and condition on the number of events observed up to then
- This knowledge can be used to find the critical values c_i such that $P_{H_0}(T_1 \ge c_1 \text{ or } T_1 \ge c_1 \text{ or } \dots T_F \ge c_F) = \alpha$.
- As there are infinitely many solutions, additional restrictions are needed ("alpha-spending rules")
 - Most common are the Pocock and the O'Brien-Fleming LandeMets-alpha-spending approaches, but there are many more.

Multiplicity + group-sequential

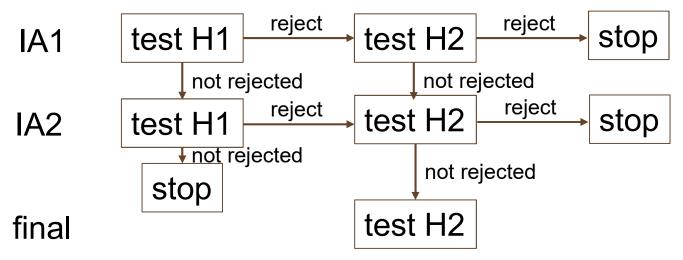
- Top layer:
 Design the multiplicity-adjustment method with a graph
- Bottom layer: Devise an alpha-spending approach for the hypotheses and all the α-levels which occur in the closed test procedure defined by the graph.
- Whenever a hypothesis H_i is rejected (no matter when), it gives its α to other hypotheses (according to the graphical procedure)
 - For α -propagation, we ignore the group-sequential aspect

Multiplicity + group-sequential

A simple example: hierarchical testing of PFS and OS



Within this setup: Two interim analyses, 1 final



Hierarchical testing of PFS and OS

- IA1 after 150 PFS events, IA2 after 300 PFS events
- Final after 200 OS events
- Information fractions
 - PFS: 0.5, 1
 - OS: 75, 150, 200 / 200 = 0.375, 0.75, 1 (estimated #OS events at IAs)
- Alpha-spending: OBF for PFS, Pocock for OS ⇒ critical values for the p-value:

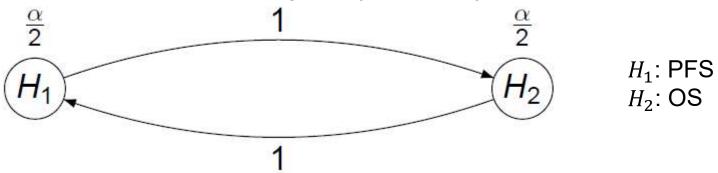
	IA 1	IA 2	F
PFS	0.0015	0.0245	0
OS (PFS not sign.)	0	0	0
OS (PFS signifikant)	0.0124	0.0117	0.0100

Hierarchical testing of PFS and OS

Remarks:

- The approach uses the known correlation between stagewise test statistics, but not between PFS and OS
 - In the hierarchical procedure, corr(PFS, OS) does not play a role.
- "Looking back" is allowed
 - If H_1 is not rejected at IA1, rejected at IA2, H_2 not rejected at IA2, we are allowed to "retest" H_2 at IA1 at the level 0.0124. This preserves the FWER.
 - ... but does it make sense? (Some debate, see e.g. Tamhane et al., 2021)
- If in practice, observed OS events diverge, we recalculate
 - e.g. if 65, 160, 200 OS events observed, use 0.0111; 0.0133; 0.0097

Modification of the example



Critical values
(OBF-Lan/deMets for PFS, PK-Lan/deMets for OS)

	IA 1	IA 2	F
PFS at $\alpha/2$	0.0004	0.0124	0
PFS at α	0.0015	0.0245	0
OS at $\alpha/2$	0.0062	0.0056	0.0046
OS at α	0.0124	0.0117	0.0100

Joint testing of PFS and OS

Remarks:

- Alpha-spending for H_1 , H_2 , ... does not have to be the same
- Alpha-spending $c_{i,k}(\alpha_{ij})$ for the different levels α_{ij} arising in the top-layer multiple test procedure of H_i also does not have to be the same

(k is stage, $\{\alpha_{i1}, \alpha_{i2}, ...\}$ is set of all levels which can arise for H_i in the graph)

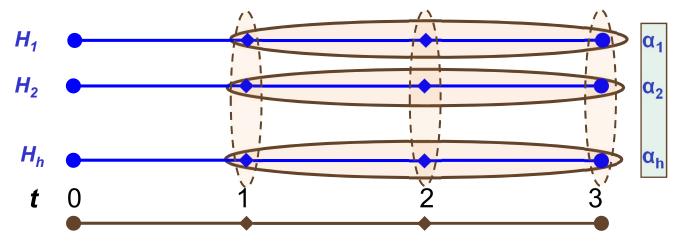
• e.g., we could have used Pocock for OS at $\alpha/2$ and then levels (0.0062, 0.0056, 0.0198) for OS at α

$$c_{2,1}\left(\frac{\alpha}{2}\right) = 0.0062; c_{2,2}\left(\frac{\alpha}{2}\right) = 0.0056$$

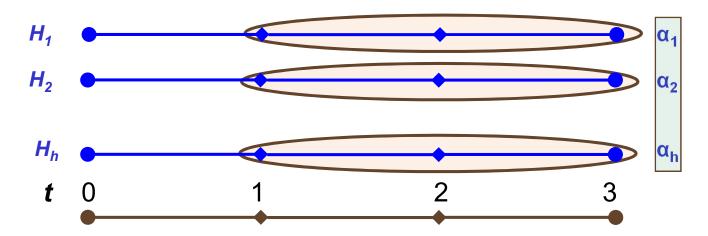
- But we must obey the condition $c_{i,k}(\alpha_{ij}) \le c_{i,k}(\alpha_{ij})$ for all $\alpha_{ij} \le \alpha_{ij}$, and k (Maurer and Bretz, 2013)
 - e.g. mustn't use Pocock for OS at $\alpha/2$ and then switch to OBF at α

Several primary endpoints

- In group-sequential trials, correlation between stages is known:
 - $\sqrt{n_i/n_i}$ between stages i,j with non-TTE-endpoints and equal group sizes
 - $\sqrt{i_i/i_i}$ between stages i,j with TTE-endpoints (i_i information fraction of stage i)
- Occasionally correlation between endpoints is also known:
 - In practice usually only if primary endpoints pertain to several doses or regimens compared with a common control.



Several primary endpoints: endpoint correlation unknown or not exploited



Strategy: "Bonferroni on hypotheses", then GS.

- Some improvements with partial knowledge of correlations between hypotheses are possible (e.g. Maurer et al., 2011)
- A personal caveat: Don't try GS-splitting on full α , then "bonferronize" GS-alphas (i.e. reverse top and bottom layer).
 - Becomes very complicated very quickly.
 - No power gains.
 - Not "wrong", but also not worth the trouble.

Several primary endpoints: correlation known

Endpoints P, S in 2 stages, normally distributed test statistics: Any set of critical values $(c_{1P}, c_{1S}, c_{2P}, c_{2S})$ with $1-\Phi (c_{1P}, c_{1S}, c_{2P}, c_{2S}) = \alpha,$ gives a valid test controlling the multiple level at α .

 $\Phi\left(c_{1P},\,c_{1S},\,c_{2P},\,c_{2S}\right)$ cdf of multivariate normal distribution with means 0, variances 1 and the known correlations

- Equally important endpoints: $c_{ip} = c_{is}$
- "Pocock-like": $c_{1P} = c_{2P}$
- "O'Brien-Fleming-like": $c_{1P} = c_{2P} / \sqrt{\text{stage-1-info-fraction}}$
- Can be done sequentially: If one of P stage 1, S stage 1, P stage 2, S stage 2 is significant, cross out the corresponding endpoint *P* or *S* and apply the resulting univariate GS test to the remaining endpoint at full α (as decribed on previous slides).

Several primary endpoints: correlation known

- In theory, we could walk through the closure defined by the graph, calculate critical values for each intersection arising in it.
- Condition $c_{i,k}(\alpha_{ij}) \le c_{i,k}(\alpha_{ij})$ for all $\alpha_{ij} \le \alpha_{ij}$, , k must be kept (if small values of the test statistic lead to rejection, otherwise reverse).
- In practice, this is complicated, the advantages of the graphical procedure are partly lost (see Bretz et al., 2011, Xi et al., 2017).
- For really complex cases with multiple sources of multiplicity (e.g. several doses, several endpoints and group-sequential testing), we usually do not know all correlations.
- Further literature on GS + (partly) known correlations: Tamhane et al., 2021; Anderson et al., 2021.

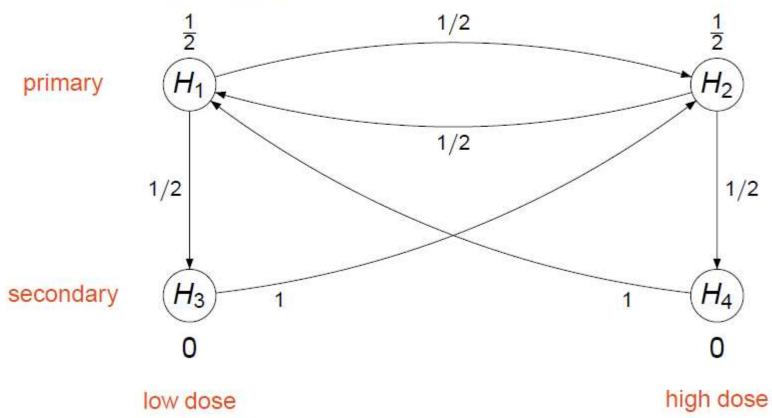
Some applications

- A more complex example
- Matching interim alphas with desired decisions I
- Matching interim alphas with desired decisions II
- Some traps to avoid

Example 1: two endpoints, two doses

Study begin

- Two interim and one final analysis, equally spaced in time
- O'Brien-Fleming-type spending function with $\alpha = 0.025$
- Test procedure:



First interim analysis (t = 1)

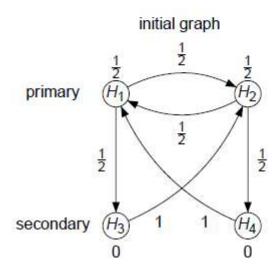
observed p-values and critical values (p-value scale), information fraction (IF)=1/3

No rejection

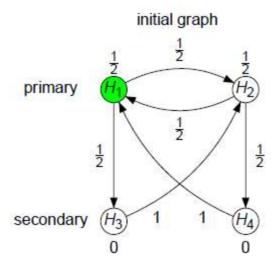
Second interim analysis (t = 2)

observed p-values and critical values (p-value scale), information fraction (IF)=2/3

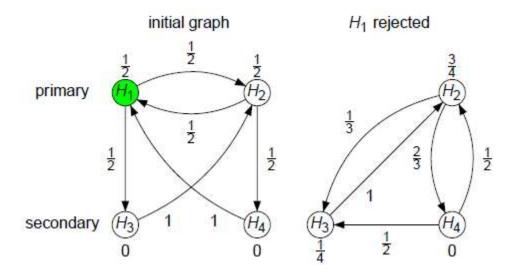
i	$p_{i,2}$	$\alpha_{i,2}^*(\alpha W_i(\{1,2,3,4\}))$	
1	0.0002	0.0022	
2	0.0035	0.0022	Critical value H_1 at $\frac{\alpha}{2}$;
3	0.002	0	Official value H_1 at $\frac{1}{2}$,
4	0.06	0	OBF split at IF= $\frac{2}{3}$
			3



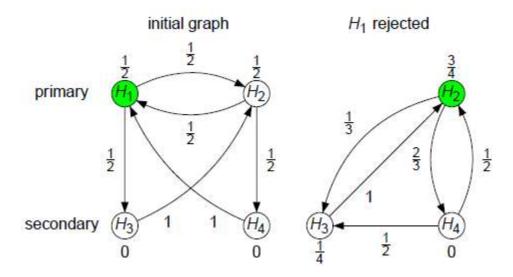
	İ	$p_{i,2}$	$\alpha_{i,2}^*(\alpha W_i(\{1,2,3,4\}))$	
is	1	0.0002	0.0022	
	2	0.0035	0.0022	
	3	0.002	0	
	4	0.06	0	



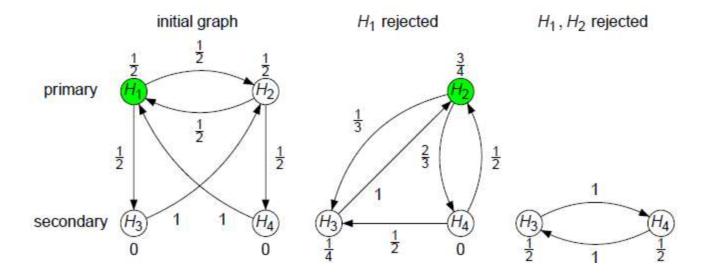
İ	$p_{i,2}$	$\alpha_{i,2}^*(\alpha W_i(\{1,2,3,4\}))$	$\alpha_{i,2}^*(W_i(\{2,3,4\})\alpha)$	
1 2 3 4	0.0002 0.0035 0.002 0.06	0.0022 0.0022 0 0	0.004 0.0008 0	Critical value H_2 at $\frac{3\alpha}{4}$; OBF split at IF= $\frac{2}{3}$



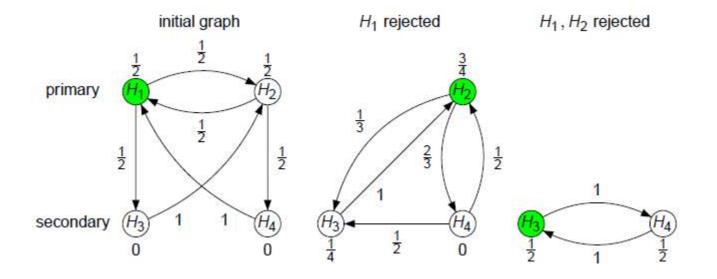
İ	$p_{i,2}$	$\alpha_{i,2}^*(\alpha W_i(\{1,2,3,4\}))$	$\alpha_{i,2}^*(W_i(\{2,3,4\})\alpha)$	
1	0.0002	0.0022	S# 11	
2	0.0035	0.0022	0.004	
3	0.002	0	0.0008	
3	0.06	0	0	



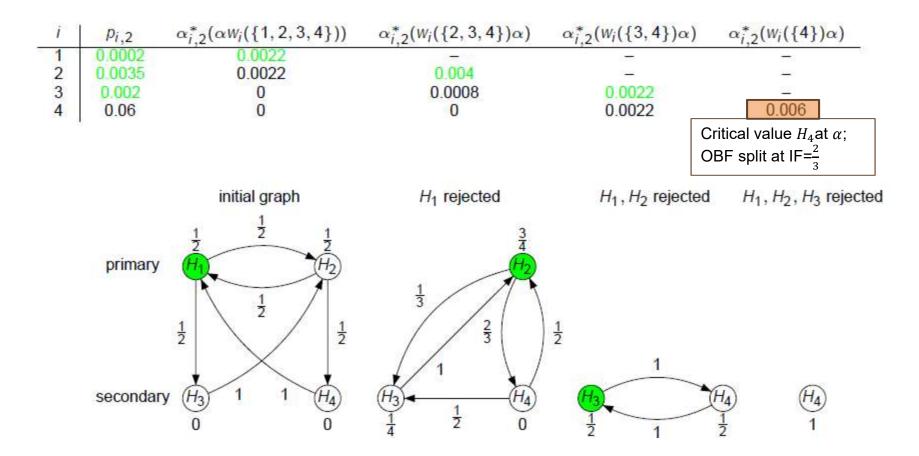
İ	$p_{i,2}$	$\alpha_{i,2}^*(\alpha W_i(\{1,2,3,4\}))$	$\alpha_{i,2}^*(W_i(\{2,3,4\})\alpha)$	$\alpha_{i,2}^*(w_i(\{3,4\})\alpha)$
1	0.0002	0.0022	5 5 99	
2	0.0035	0.0022	0.004	
3	0.002	0	0.0008	O.0022 Critical value H_3 at $\frac{\alpha}{3}$;
4	0.06	0	0	0.0022
				OBF split at $IF=\frac{2}{3}$
				3



İ	$p_{i,2}$	$\alpha_{i,2}^*(\alpha W_i(\{1,2,3,4\}))$	$\alpha_{i,2}^*(W_i(\{2,3,4\})\alpha)$	$\alpha_{i,2}^*(W_i(\{3,4\})\alpha)$	
1	0.0002	0.0022	12 55 1111		
2	0.0035	0.0022	0.004	=	
3	0.002	0	0.0008	0.0022	
2 3 4	0.06	0	0	0.0022	



Example 1: Decision



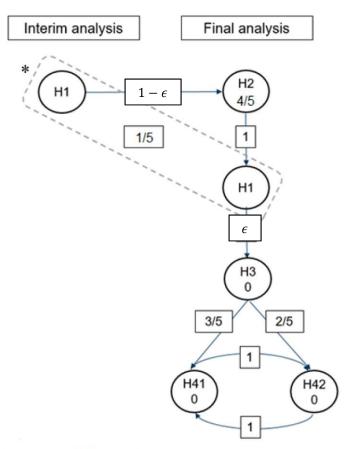
Decision to stop the trial

Example 2: matching interim alphas

Background:

- 2 jointly primary endpoints with hypotheses H₁ and H₂; H₁ tested twice (IA and F), H₂ only at F.
- Subsequent secondary endpoints, all just tested once at F
- Study continues irrespective of result of IA (due to longterm safety data collection and immature data for key secondary objectives)
- Conditional approval might be granted based on very convincing IA results.

Example 2: graph from the protocol



 H_1 initially tested at level $\frac{\alpha}{\frac{5}{5}}$ H_2 initially tested at level $\frac{\alpha}{\frac{4 \cdot \alpha}{5}}$

If H_1 rejected, H_2 tested at α If H_2 rejected, H_1 tested at α

How do we best split $\frac{\alpha}{5}$ and α onto IA and F?

*Note that H₁ is **only** tested at the final analysis (at alpha_F adjusted to account for H₁ being tested and not rejected at the IA) in case of non-rejection at the IA and rejection of H₂.

Example 2: graph from the protocol

How do we best split $\frac{\alpha}{5}$ and α onto IA and F?

IA after 250 patients, F after 430 patients.

 $\frac{\alpha}{5}$ will be completely used up at IA.

 \Rightarrow No re-testing of H_1 if H_2 cannot be rejected.

If H_2 rejected at F, H_1 will get $4 \cdot \frac{\alpha}{5}$. This will go entirely to the final analysis of H_1 .

GS-levels for H_1 , $\alpha = 2.5\%$: (0.005,0) for $\frac{\alpha}{5}$ (if H_2 not rejected) (0.005,0.023) for α (if H_2 rejected)

Example 2: R code

```
library(mytnorm)
alpha<-0.025 # Set overall 1-sided alpha for hypothesis testing
nIA<-250 # Planned sample size at the Interim Analysis (IA: stage 1)
nFin<-430 # Planned sample size at the Final analysis (FA: stage 2)
IF<-nIA/nFin # Information Fraction at the IA
corr<-(1-sqrt(IF))*diag(2)+sqrt(IF) #correlation matrix
# To adjust for multiplicity in the group-sequential test of H1 alone, alpha for the test
# of H1 is split to (alpha/5, alphaF) for the IA and Final Analysis respectively.
# calculate critical value for alpha spent at stage 1
c1 a<-qnorm(1-alpha/5) # alpha/5=1-sided alpha allocated at the IA
# Spending function to calculate the adjusted critical value x for stage 2,
# given alpha=overall alpha and c0 is the critical value of stage 1.
adjCrit<-function(alpha1, alpha, c0, corr){
 x<-qnorm(1-alpha1)
 check<-pmvnorm(upper=c(c0,x),corr=corr, algorithm=Miwa)
 return(1-check-alpha)
c2starp a<-uniroot(adjCrit, lower = alpha/5, upper = alpha, alpha=alpha, c0=c1 a, corr=corr, tol=1E-12)
# adjusted alpha (on the % scale) for group sequential test of H3: UPCR at Final Analysis
# with alpha/5=0.5% spent at IA.
adjustedAlphaF<-round(c2starp a$root*100,1)
adjustedAlphaF
```

Example 2: Why split like this?

```
GS-levels for H_1, \alpha = 2.5\%:

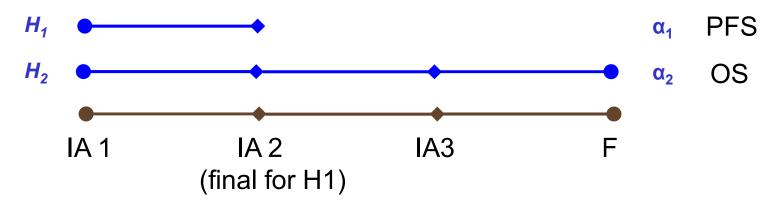
(0.005,0) for \frac{\alpha}{5} (if H_2 not rejected)

(0.005,0.023) for \alpha (if H_2 rejected)
```

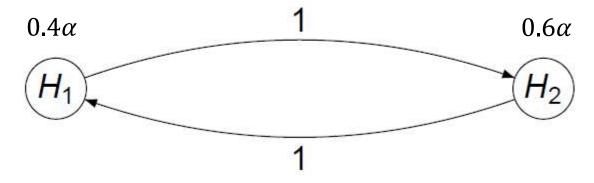
• This way, we avoid "having to look back": GS-spending at IA uses exactly the same value for all α_{1j} of H_1 at j=I,F.

Example 3: matching interim alphas

Jointly primary endpoints: PFS and OS



Graph:



Example 3: matching interim alphas

- PFS: O'Brien-Fleming
- OS:
 - spending at 1.5%: O'Brien-Fleming
 - spending at 2.5%: For 1st interim, same as 1.5% OBF, for 2nd and 3rd interim same as 2.5% OBF, for the final all that's left.

Numerical example:

Information fractions of OS: 0.35, 0.5, 0.77, 1

Critical values for OS (Z-scale):

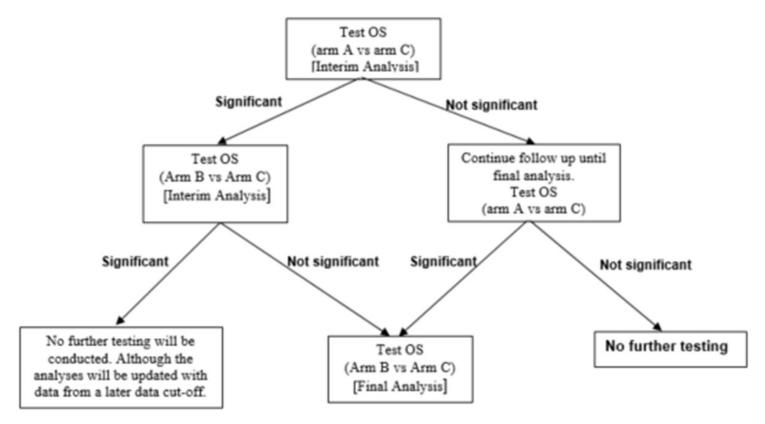
	IA1	IA2	IA3	F
OBF at 1.5%	3.949	3.254	2.550	2.218
at 2.5%	3.949	2.973	2.321	2.019
OBF at 2.5%	3.613	2.973	2.321	2.020

Example 3: matching interim alphas

- Same motivation as in example 2: Matching the critical values avoids having to "look back" at previous interim analyses for alpha-adjustment.
- We could distribute the saving from IA1 in other ways.
- In this example, hardly any difference between conventional OBF at 2.5% and the modification.
 - Reason: OBF spends "next to nothing" at an interim analysis with 0.35 information fraction: pnorm(-3.613)=0.00015
 - Hence, there is next to nothing to redistribute.
- R code:

Example 4: traps to avoid

- 3-arm study with an interim and a final analysis
- Hierarchical testing (A vs C, then B vs C)



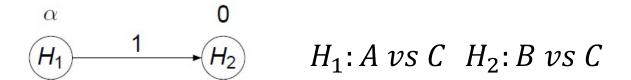
Example 4: traps to avoid

Looks very straightforward.

OBF for interim and final, both H_1 and H_2

- When protocol is almost finished, clinical team decides to bring in a futility stop for H₁.
- Idea: If H_1 is stopped for futility (and hence "not tested"), we can test H_2 at level α .
- That's obviously (?) not true.
 - The trial statistician caught this, but was uncertain, so reached out to confirm.

Example 4: traps to avoid



- Assume we spend $(0, \alpha)$ at I and F for both H_1 and H_2 .
- Then the futility stop is just like deciding at the interim whether to test H_1 and H_2 .
- That's an adaptive design with endpoint selection.
- It is easy to calculate the inflation in this case analytically.
 - Inflation decreases with increasing correlation between between test statistics.
 - R code for calculation of the inflation:

alphain flation prims witch. R

Agenda

14:00 – 14:45	Introduction to multiple testing Dong Xi		
14:45 – 16:15	Graphical approaches to multiple testing Frank Bretz		
Break			
16:30 – 17:30	Extensions to group sequential designs Ekkehard Glimm		
17:30 – 18:00	Extensions to pooled analyses from two studies Dong Xi		

Background: FWER and two-study paradigm

- Regulatory guidance mandates strong FWER control at a pre-specified significance level α for a single study
 - FDA (2017), EMA (2017)
- "Requirement" for two positive confirmatory studies
 - FDA (1998) guidance
 - many examples of diseases under the two-study paradigm
 - "replication", "independent substantiation"
- Single study approvals generally limited to "mortality or irreversible morbidity" settings
 - "statistically very persuasive", "very low p-value"

Background: Pooled analysis to address resource imbalance

- Different sample sizes are needed to achieve a certain power (e.g., 80%) for different endpoints
 - A short-term symptom endpoint (E_1 , e.g., FEV1)
 - A long-term outcome endpoint with low frequency/prevalence (E_2 , e.g., COPD exacerbation)
 - E₂ may require a sample size twice as large as E₁
- These unbalanced requirements of resources in a single study are amplified under the two-study paradigm
- One solution is to pool data from the two studies for E_2 without doubling the sample size of each study

Problem statement

- Pooling data from two studies increases statistical efficiency
- Different ways to pool
 - Naive pooling
 - Meta-analytic approach using 'study' as a stratification factor
- Poolability needs careful examination to avoid systematic bias/difference

What approaches could be considered for managing multiplicity when data on an endpoint from two or more trials were planned to be pooled, and each trial had multiple endpoints managed?

Lavange (2019)

Principles Bretz and Xi (2019)

- Strong FWER control at (one-sided) level $\alpha = 0.025$ within each of the two confirmatory studies
- Confirmation of independent substantiation from at least one other endpoint prior to the pooled analysis
- Control of the submissionwise error rate (SWER) across both studies at an appropriate level
 - Probability to make a false claim of success for an endpoint while taking into account that a significant result on the same endpoint has to be obtained in both studies

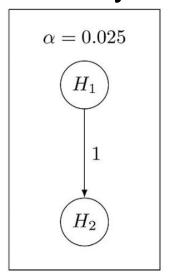
Three roles of the pooled analysis

- Two endpoints
 - E_2 requires twice the sample size of E_1 to satisfy a reasonable power
- Two-study paradigm
 - Independent and identically designed
 - H_1 and H'_1 for E_1 are tested independently in Study 1 and 2, respectively
 - H_2 and H_2' for E_2 are tested independently in Study 1 and 2, respectively
- Pooled analysis for E₂
 - \widetilde{H}_2 is tested using data from both studies
- Role of the pooled analysis
 - Secondary
 - Primary
 - Co-primary

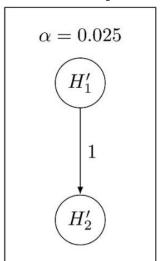
Pooled analysis as a secondary analysis

- Two endpoints (E_1 : primary and E_2 : secondary)
- Without the pooled analysis
 - Hierarchical test within each study
 - Study 1: test H_1 at level $\alpha = 0.025$
 - If rejected, test H_2 at level $\alpha = 0.025$
 - Study 2: test H_1' at level $\alpha = 0.025$
 - If rejected, test H_2' at level $\alpha = 0.025$
- Summary
 - FWER for E_1 and $E_2 \leq 0.025$
 - SWER for E_1 and $E_2 \le 0.025^2$

Study 1

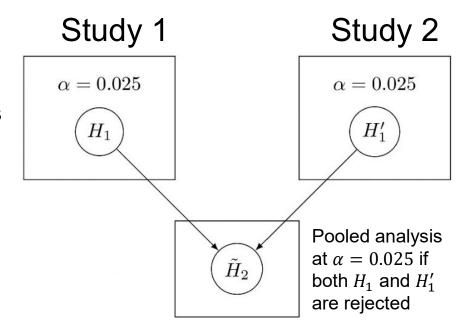


Study 2



Pooled analysis as a secondary analysis

- Two endpoints (E_1 : primary and E_2 : secondary)
- With the pooled analysis
 - Study 1: test H_1 at level $\alpha = 0.025$
 - Study 2: test H'_1 at level $\alpha = 0.025$
 - If both H_1 and H_1' are rejected, \widetilde{H}_2 is tested using data from both studies at level $\alpha = 0.025$
- Summary
 - FWER for $E_1 \le 0.025$
 - SWER for $E_1 \le 0.025^2$
 - Independent substantiation via E_1
 - Level $\alpha=0.025$ for \widetilde{H}_2 is determined by the conventional level of proof for a single hypothesis



Pooled analysis as an additional secondary analysis Bretz, Maurer, and Xi (2019)

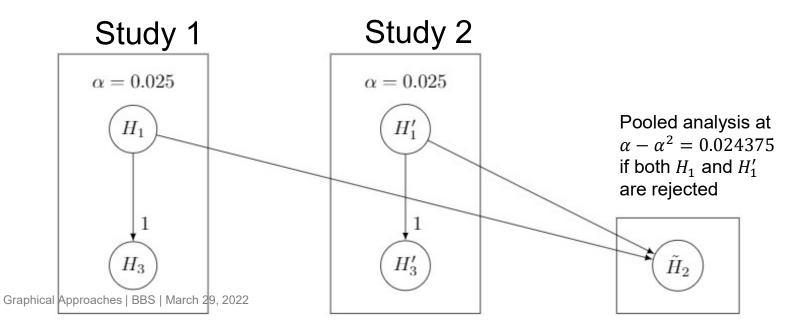
- Three endpoints (E_1 : primary and E_2 , E_3 : secondary)
- With the pooled analysis

123

- Hierarchical test within each study for E_1 and E_3
- If both H_1 and H_1' are rejected, \widetilde{H}_2 is tested using data from both studies at level $\alpha-\alpha^2$
 - Bonferroni split between H_3 , H_3' and \widetilde{H}_2

Summary

- FWER within each study, i.e., for E_1 and E_3 , is controlled at level $\alpha = 0.025$
- SWER for $E_1 \le 0.025^2$
- Type I error rate for secondary endpoints, i.e., for E_2 and E_3 , is controlled at level $\alpha = 0.025$



Pooled analysis as a primary analysis

- Two endpoints (E_1 , E_2 : primary)
- Without the pooled analysis
 - For example, Bonferroni test within each study
 - Study 1: test H_1 and H_2 at level $\alpha/2 = 0.0125$
 - Study 2: test H_1' and H_2' at level $\alpha/2 = 0.0125$
- Summary
 - FWER for E_1 and $E_2 \leq 0.025$
 - SWER for E_1 and $E_2 \le 2 \cdot 0.0125^2 < 0.025^2$

Study 1

$$\alpha/2 = 0.0125 \qquad \alpha/2 = 0.0125$$

$$H_1 \qquad H_2$$

Study 2

$$\alpha/2 = 0.0125 \qquad \alpha/2 = 0.0125$$

$$H_1'$$

$$H_2'$$

Pooled analysis as a primary analysis

- Two endpoints $(E_1, E_2 \text{ primary})$
- With the pooled analysis
 - Study 1: test H_1 at level $\alpha/2 = 0.0125$
 - Study 2: test H_1' at level $\alpha/2 = 0.0125$
 - Test \widetilde{H}_2 at level $\alpha^2 (\alpha/2)^2 = 0.00046875$ (Bonferroni split between H_1 , H_1' and \widetilde{H}_2)

- Summary
 - FWER for E_1 ≤ 0.0125
 - SWER for E_1 and $E_2 \leq 0.025^2$
 - If only \widetilde{H}_2 is significant, independent substantiation may be questioned since either H_1 or H_1' is not significant

Study 1

$$\alpha/2 = 0.0125$$

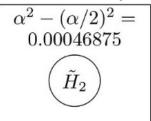
$$H_1$$

Study 2

$$\alpha/2 = 0.0125$$

$$H_1'$$

Pooled analysis



Pooled analysis as a co-primary analysis

- Two endpoints (E_1 , E_2 : co-primary)
- Without the pooled analysis
 - Study 1: test H_1 and H_2 each at level $\alpha = 0.025$
 - Study 2: test H_1' and H_2' each at level $\alpha = 0.025$
 - Claim study success only if both hypotheses are rejected
- Summary
 - FWER for E_1 and $E_2 \leq 0.025$
 - SWER for E_1 and $E_2 \le 0.025^2$

Pooled analysis as a co-primary analysis

- Two endpoints (E_1, E_2) : co-primary)
- With the pooled analysis
 - Study 1: test H_1 at level $\alpha = 0.025$
 - Study 2: test H_1' at level $\alpha = 0.025$
 - Test \widetilde{H}_2 at level $\alpha = 0.025$
 - Determined by the conventional level of proof for a single hypothesis

Summary

- FWER for $E_1 \le 0.025$
- SWER for $E_1 \le 0.025^2$ and for $E_2 \le 0.025$
- Independent substantiation via E₁
- Significance level for \widetilde{H}_2 could be determined to be $[\alpha^2, \alpha]$, in order to balance the level of replication standard and the feasibility of the trials

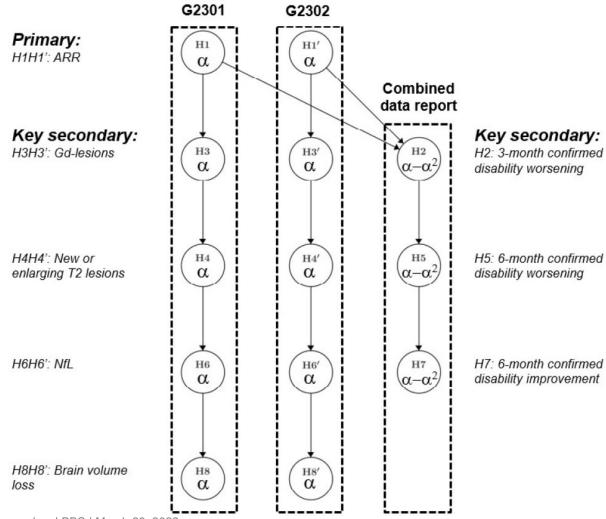
ASCLEPIOS I and II – Design

Hauser et al. (2020)

- Two confirmatory studies of identical design in patients with multiple sclerosis to compare ofatumumab versus teriflunomide
- Primary endpoint was the annualized relapse rate (ARR)
- Key secondary endpoints:
 - disability worsening after 3 months, disability worsening after 6 months, disability improvement after 6 months
 - number of Gd lesions, number of new or enlarging T2 lesions, neurofilament light (NfL) chain, brain volume loss
- Randomizing 900 patients per study would provide > 90% power in each study to detect a 40% lower ARR
- Combining the data from both studies, a total of 1800 patients would provide 90% power and 80% power to detect a 38.6% lower risk of disability worsening at 3 months and at 6 months, respectively

ASCLEPIOS I and II – Testing scheme

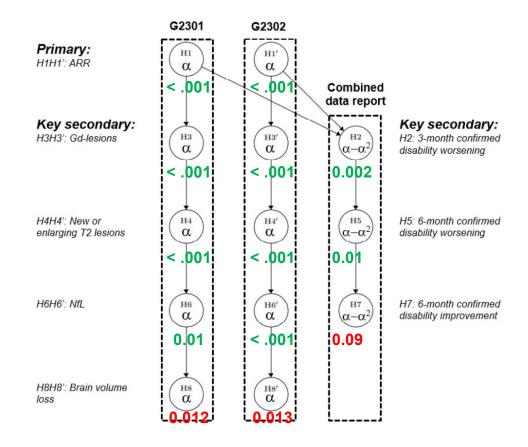
Hauser et al. (2020)



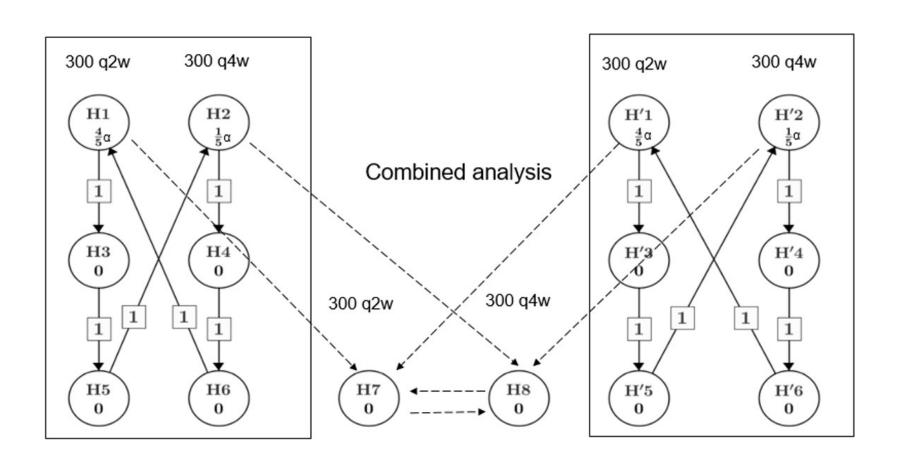
ASCLEPIOS I and II - Results

Hauser et al. (2020)

- Overall, 946 patients were assigned to receive ofatumumab and 936 to receive teriflunomide
- All confidence intervals and p-values in the study report were presented without adjustments

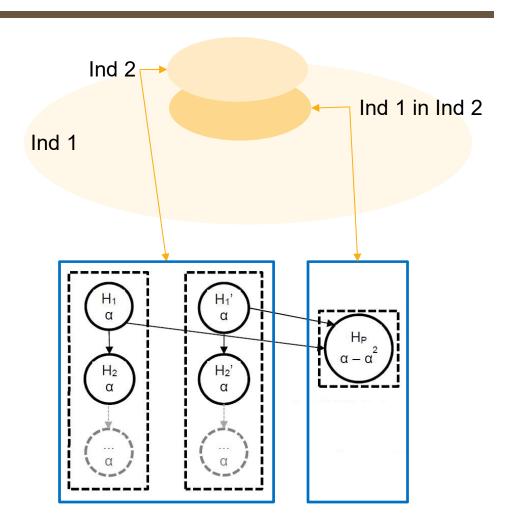


More examples Multiple doses and multiple endpoints



More examples Two birds, one stone

- File a single dossier for two related indications ('Ind 2' and 'Ind 1 in Ind 2') based on two sets of endpoints from the two confirmatory studies
 - The two confirmatory studies used 'Ind 2' in their testing strategy
 - The project level testing strategy incorporated the endpoint relevant for 'Ind 1 in Ind 2'



Conclusions and other considerations

- Several test strategies are proposed, based on a few key principles and depending on the role on the pooled analysis
- Pooled analysis would be done in a timely manner if both studies are finished simultaneously
- Reduce the dependency of individual trial reports on the pooled analysis for logistic efficiency
 - Not recommend to include the pooled analysis into the study testing strategy, see Bretz, Maurer, and Xi (2019) for a case study
- Pooled analysis relies on independent substantiation
 - Efficiency of the pooled analysis may be outweighed by the risk of inconsistency (e.g., two studies of different designs/populations)
 - Maca, Gallo, Branson, and Maurer (2002) discuss a consistency requirement for testing the pooled analysis

Any questions?

References

- Anderson, Guo, Zhao, Sun (2021): A unified framework for weighted parametric group sequential design (WPGSD). <u>arXiv:2103.10537</u>
- Bretz, Maurer, Brannath, Posch (2009) A graphical approach to sequentially rejective multiple test procedures. Statistics in Medicine 28: 586–604.
- Bretz, Posch, Glimm, Klinglmueller, Maurer, Rohmeyer (2011) Graphical approaches for multiple comparison procedures using weighted Bonferroni, Simes or parametric tests. Biometrical Journal 53: 894–913.
- Bretz, Xi (2019) Commentary on 'Statistics at FDA'. Statistics in Biopharmaceutical Research, 11, 20-25
- Bretz, Maurer, Xi (2019) Replicability, Reproducibility, and Multiplicity in Drug Development. Chance, 32(4), 4-11
- Burman, Sonesson, Guilbaud (2009) A recycling framework for the construction of Bonferroni-based multiple tests. Statistics in Medicine 28: 739–761.
- Dmitrienko, Offen, Westfall (2003) Gatekeeping strategies for clinical trials that do not require all primary effects to be significant. Statistics in Medicine 22: 2387–2400.

References

- EMA (2017) Guideline on multiplicity issues in clinical trials
- FDA (1998) Guidance for Industry: Providing Clinical Evidence of Effectiveness for Human Drug and Biological Products
- FDA (2017) Multiple Endpoints in Clinical Trials
- Hauser et al. (2020) Ofatumumab versus teriflunomide in multiple sclerosis. New England Journal of Medicine, 383(6), 546-557
- Jennison, Turnbull (1997): Group-sequential analysis incorporating covariate information. J Am Stat Assoc 92, 1330–1341.
- LaVange (2019) Statistics at FDA: Reflections on the Past Six Years. Statistics in Biopharmaceutical Research, 11, 1-12
- Maca, Gallo, Branson, Maurer (2002) Reconsidering Some Aspects of the Two-Trials Paradigm. Journal of Biopharmaceutical Statistics, 12, 107-119
- Maurer, Bretz (2013): Multiple testing in group sequential trials using graphical approaches. Statistics in Biopharmaceutical Research 5, 311–320.

References

- Maurer, Glimm, Bretz (2011): Multiple and Repeated Testing of Primary,
 Coprimary, and Secondary Hypotheses. Statistics in Biopharmaceutical Research
 3, 336-352
- Scharfstein, Tsiatis, Robins (1997): Semiparametric efficiency and its implication on the design and analysis of group-sequential studies. J Am Stat Assoc 92, 1342–1350.
- Tamhane, Xi, Gou (2021): Group sequential Holm and Hochberg procedures.
 Statistics in Medicine 40, 5333-5350.
- Xi, Glimm, Bretz (2016): Multiplicity. In: Cancer clinical trials current and controversial issues in design and analysis, edited by Stephen L. George, Xiaofei Wang, and Herbert Pang, Boca Raton, FL: Chapman & Hall/CRC.
- Xi, Glimm, Maurer, Bretz (2017): A unified framework for weighted parametric multiple test procedures. Biometrical Journal 59, 918-931.
- Xi, Bretz (2021) Graphical Approaches for Multiple Comparison Procedures. In: Handbook of Multiple Comparisons. Chapman and Hall/CRC.