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Good outcome for this session:

1) Not all MAMS are created equal.

2) Understand the MAMS landscape.

3) Understand the theoretical basis of
pre-defined and flexible adaptive MAMS.

4) Awareness of available R software
and rpact functionality.
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General considerations for confirmatory
multi-arm trials
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Multi-arm trials

Comparison of G > 1 experimental treatment arms versus a shared control arm:

Different molecules or combination therapies in same indication.

Multiple doses of same molecule.

Features:

Lower probability of being randomized to control: popular with patients.

Efficiency gains.

Shared trial infrastructure.

Allows for randomized comparisons between intervention arms.

Treatment arm selection at interim analyses.

With master protocols, treatment arms may also be added.

Combine development phases in seamless designs.

Caution: Planning a phase III trial without phase II data is risky!
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Pair-wise (PWER) or family-wise error rate (FWER) control?

PWER: Probability that a specific true null hypothesis Hg
0 is falsely rejected.

FWER: Probability that at least one of (up to G) true null hypotheses is falsely

rejected.

FWER of unadjusted comparisons to control in a multi-arm trial vs G independent

two-arm trials:

Positive correlation between test statistics in multi-arm trial due to shared

control.

This correlation reduces FWER!

FWER adjustment:

Not recommended: solely due to shared control.

Recommended: if there is increased chance of making single claim of

effectiveness by testing multiple hypotheses. Example: Several doses of same

drug.

For more details: Howard et al. (2018).
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How to control the FWER? ⇒ Apply closed testing!

Example: Closed testing for a 4-arm trial with 3 comparisons versus control.

Elementary null hypotheses: Hg
0 : µg = µC (g = 1, . . . , 3).

Pair-wise intersection hypotheses: H12
0 = H1

0 ∩ H2
0 : µ1 = µ2 = µC , H

13
0 , H23

0 .

Overall rejection hypothesis: H123
0 = H1

0 ∩ H2
0 ∩ H3

0 : µ1 = µ2 = µ3 = µC .

In order to reject H3
0 at the family-wise 2.5% level, one needs to reject H3 and all

intersection hypotheses implied by it, i.e. H3
0 , H

13
0 , H23

0 , H123
0 , at the 2.5% level.

Note: More intersection hypotheses would need to be tested if one wanted to control

the FWER across all pair-wise comparisons. Exception: G = 2.
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Illustration of closed testing

Wassmer and Brannath (2016)
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How to test intersection hypotheses?

Null hypotheses Hg
0 : µg = µC (g = 1, . . . ,G); observed Z -scores zg and p-values pg .

Test for intersection hypothesis HI
0 = ∩g∈IH

g
0 for I ⊂ {1, . . . ,G}:

Dunnett test: Let zmax = max{zg : g ∈ I}. Then padjI = 1− Φ(zmax , . . . , zmax )

where Φ is the Dunnett distribution, i.e. the joint multivariate t- (or approximate

normal) distribution of the Z -statistics under HI
0 .

Bonferroni test: padjI = |I| ·ming∈I{pg}.

Simes test: Let p[1] ≤ . . . ≤ p[|I|] be the ordered p-values pg (g ⊂ I). Then

padjI = min{|I| · p[1],
|I|
2

· p[2],
|I|
3

· p[3], . . . , p[|I|]}.

A priori hierarchical test: padjI = pmax{g∈I} where max{g ∈ I} refers to the

hypothesis of highest importance.

More details: Wassmer and Brannath (2016), Section 11.1.2.
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Optimal randomization ratio

If comparing multiple treatments to control but not to each other (in superiority trial)

⇒ equal randomization inefficient.

Dunnett (1955), Wassmer (2011), Wason and Jaki (2012): each of G treatment groups gets

1/
√
K × control.

Chandereng et al. (2020): Shows that the above randomization ratio minimizes∑G
g=1 Var(X̄g − X̄c) for normal endpoints with known variance.

Application:

K = 2: 1.41 : 1 : 1.

K = 3: 1.73 : 1 : 1 : 1.

Caveat: The optimal allocation ratio is likely closer to equal randomization if

treatments can be dropped at interim analyses. Wason and Jaki (2012)
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Examples

“MAMS”used very broadly.

RECOVERY:

Landmark UK COVID-19 trial: https://www.recoverytrial.net, link to SAP.

Design:

Pragmatic platform trial of pairwise RCTs.

No type 1 error correction ⇒ shared control “only”.

Status (as of 23August2022):

46’627 participants from 175 sites.

Results for 10 interventions so far, 4 of them with proven efficacy.

5 interventions currently tested in the ongoing trial.
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Examples - continued

STAMPEDE:

Since 2005 in UK, high-risk prostate cancer, http://www.stampedetrial.org.

Initial design: 5 treatment groups vs control, randomized 1:1:1:1:1:2.

4 stages with pairwise comparisons to control

3 futility interims to drop groups based on failure-free survival (FFS).

Final efficacy analysis based on primary outcome overall survival (OS).

Pair-wise comparisons to control at unadjusted one-sided α = 0.025. ⇒
Maximum FWER of 0.103. Bratton et al. (2016).

Power of pair-wise comparisons 90% (≈ 83% after accounting for futility

interims).

Stage Target HR Outcome Continuation Continuation Required control

prob.: HR=1 prob.: HR=0.75 group events

1 0.75 FFS 0.500 0.95 113

2 0.75 FFS 0.250 0.95 216

3 0.75 FFS 0.100 0.95 334

4 0.75 OS Sig. level: 0.025 Power: 0.90 403
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Pre-planned MAMS designs with FWER

control / cumulative MAMS
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Pre-planned MAMS

Pre-planned MAMS:

Extend group-sequential designs to “multiple groups to control” comparison.

Interim analyses:

Futility: select promising treatment(s) to be compared with control in

subsequent stages ⇒ drop ineffective groups.

Efficacy: potential to stop trial early.

Once trial started ⇒ type I error protection only guaranteed if

interim futility / efficacy decisions follow pre-specified criteria.

Follmann et al. (1994), Wason and Jaki (2012), Magirr et al. (2012), Magirr et al. (2014),

Jaki et al. (2019), Ghosh et al. (2017), Ghosh et al. (2020), many more.

Slide #12



Setup (template case)

Normally distributed outcomes with known variance.

G groups vs common control.

Hg
0 : µg − µC ≤ 0 (g = 1, . . . ,G) vs Hg

A : µg − µC > 0 (g = 1, . . . ,G).

J stages.

At interim j , compute standardized test statistics Zg
j of group g vs control based on

the cumulative data from stage 1 until stage j .

The Z -scores Zg
j (g = 1, . . . ,G , j = 1, . . . , J) follow a multivariate normal

distribution with known correlation matrix (Anderson et al. (2022)).
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Group-sequential case with efficacy interim analyses only

Denote the maximum Z -score at stage j by Zmax
j = maxg∈{1,...,G}{Z

g
j }.

If one wants to spend αj of the total type I error at stage j with
∑J

j=1 αj = α, then

associated efficacy boundaries bj for the Z -scores can be calculated via the equations:

P0(Z
max
1 > b1) = α1 and P0(∩j−1

l=1 {Z
max
l ≤ bl} ∩ {Zmax

j > bj}) = αj (j>1).

Calculations are under the global null hypothesis but, in this special case, this implies

strong FWER control (Magirr et al. (2012)).

Calculations of multivariate normal probabilities are computationally intensive.

Massively reduced computation time: Ghosh et al. (2017). Implemented (binary,

continuous) in East MAMS module.
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Power and sample size

With G > 1 treatments, definition of power not obvious.

δ: effect that, if present, we would like to detect with high probability.

δ0: effect that, if present, would not be of interest. (δ0 = 0 implies that any

effect would be worth detecting.)

Dunnett (1984): least favorable configuration:

P(reject H1
0 assuming µ1 − µ0 = δ and µg − µ0 = δ0, g = 2, . . . ,G).

Minimizes

P(reject H1
0 over all choices of µ1, . . . , µG s.t. µ1 − µ0 ≥ δ

and µg − µ0 ≤ δ0, g = 2, . . . ,G).

Expected sample size: mean number of patients recruited before trial stops.

Analytical expressions: Magirr et al. (2012). Does not mean closed form - integrals!
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Adding pre-planned treatment selection rules

Critical values depend on selection rule!

Select the best:

Treatment with largest test statistic only continues with control beyond first

interim.

Stallard and Todd (2003).

Keep all promising:

Add binding futility boundaries for treatments to proceed from stage j to j + 1.

Magirr et al. (2012).
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What happens if we do not follow selection rule?

Select the best:

Select experimental treatment other than that with largest Zg
j ⇒ conservative.

Select > 1 experimental treatment to go beyond 1st stage ⇒ T1E not controlled.

Keep all promising:

Dropping experimental treatment(s) although not formally futile ⇒ conservative.

Keep experimental treatment although declared futile ⇒ T1E not controlled.

Rescue to maintain T1E control:

Apply Conditional Rejection Principle (CRP) and closed testing after deviations

from pre-planned selection rule (Magirr et al. (2014),Ghosh et al. (2020)).

Note: If the variance is unknown, the conditional error rate is difficult to calculate

and relies on additional assumption (Wassmer and Brannath (2016), Section 11.1.5).
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Example: Boundaries and sample size using R package MAMS

> library(MAMS)

> # Two interventions (K=2) vs control, 2 stages (J=2) with equal sample size per group

> # Allocation ratios:

> # r0 refers to relative cumulative allocation across stages in control; r refers to treatment

> # O'Brien-Fleming boundary shape for efficacy and a binding futility boundary at Z=0

>

> r0 <- c(1, 2)

> mams22 <- mams(K = 2, J = 2, alpha = 0.025, power = 0.8, r = r0, r0 = r0,

+ ushape = "obf", lshape = "fixed", lfix=0,

+ delta = 10, delta0 = 4, sd = 24, p = NULL, p0 = NULL)
> mams22

Design parameters for a 2 stage trial with 2 treatments

Stage 1 Stage 2

Cumulative sample size per stage (control): 57 114

Cumulative sample size per stage (active): 57 114

Maximum total sample size: 342

Stage 1 Stage 2

Upper bound: 3.139 2.22

Lower bound: 0.000 2.22
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Summary: Pre-planned MAMS

Generalization of group-sequential designs.

Rely on joint distribution of cumulative test statistics.

Type I error protection:

Original design: Only if conduct compliant with pre-defined interim futility /

efficacy boundaries.

Deviations from pre-defined rules: Rescue with Conditional Rejection

Principle (CRP) and closed testing (Magirr et al. (2014),Ghosh et al. (2020)) .

Design may be more efficient than adaptive designs using stage-wise p-value

combination (Ghosh et al. (2020)) but application of CRP principle (required for

full adaptivity) assumes known variances.

Numerically challenging, but feasible (for reasonable number of stages).

R package MAMS. Gives sample size, critical values, allows trial simulation.

Time-to-event endpoints: timing needs more work, e.g. via rpact.
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Flexible adaptive (stage-wise) MAMS
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p-value combination across stages

+

closed testing
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Setup (template case)

Normally distributed outcomes.

G groups vs common control.

Hg
0 : µg − µC ≤ 0 (g = 1, . . . ,G) vs Hg

A : µg − µC > 0 (g = 1, . . . ,G).

J stages (i.e. J − 1 interim analyses plus final analysis).

After each stage j , analyse data and based on these data make a decision:

Stop for efficacy of one or multiple treatment groups.

Stop for futility for all treatment groups.

Proceed to stage j + 1 but may drop treatment groups for futility or re-assess

sample size.
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Re-cap: Methodology to control the FWER

After each stage j , calculate p-values for the elemental null hypotheses Hg
0 and all

intersection null hypotheses HI
0 = ∩g∈IH

g
0 for I ⊂ {1, . . . ,G} based on data from

stage j only (i.e. not cumulative data).

If treatment groups have been dropped prior to stage j , then a valid p-value for

testing HI
0 is obtained by testing H

I\E
0 where E denotes the set of excluded

groups.

To make an interim test decision after stage j , combine each of the stage-wise

p-values across stages 1, . . . , j using a combination test.

Reject Hg
0 after stage j if all combination p-values for Hg

0 and for all intersection

hypotheses HI
0 with g ∈ I are below the local significance level of the combination

test for stage j .
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Re-cap: Illustration of p-value combination and closed testing

Combination tests to be performed for the closed system of hypotheses (G = 3) for

testing hypothesis H3
0 if treatment groups 2 and 3 are selected for the second stage

Source: Slides Gernot Wassmer.
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Design choices for adaptive MAMS

Design choices (including planned adaptations) should be pre-defined in the protocol

and SAP.

Number of stages J and sample size in the control and each (remaining) treatment

group per stage.

Typically chosen based on trial simulations.

p-value combination test across stages.

E.g. inverse normal combination test with pre-defined α-spending (for efficacy

interims) and weights aligned with planned sample sizes.

Intersection test

E.g. Dunnett test.

Caution: Bonferroni tests may lead to intersection p-values of 1 which imply an

implicit futility stop (because inverse normal combination tests cannot lead to

rejection if one of the involved p-values is 1).

Slide #25



Design choices for adaptive MAMS - continued

Futility stopping rules for treatment groups.

Can be based on conditional power.

Alternatively, rpact’s simulation tool allows treatment selection options:

Select best or r best treatment groups ("best", "rbest")

Select treatment groups not worse than ϵ compared to the best

("epsilon").

User-defined ("userDefined").

Sample size re-assessment rules (if any).

Can be based on conditional power.

Also specify minimum and maximum allowed sample size.
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Design and analyses of MAMS using rpact

Key functions:

Specify p-value combination test: getDesignInverseNormal.

Trial simulation:getSimulationMultiArm[Means,Rates,Survival].

Trial analysis: getDataset, getAnalysisResults.

Useful vignettes (https://www.rpact.com/vignettes):

Simulating Multi-Arm Designs with a Continuous Endpoint.

Analysis of a Multi-Arm Design with a Binary Endpoint.
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Example: Adaptive design simulation using rpact

> # 2 stages of equal size, 2 treatment groups vs control

> # Normal outcomes, true mean diff: 10 (group 1), 4 (group 2); stDev: 24

> # For this example, use 56 subjects per group and stage

> # (as per getSampleSizeMeans(alternative=10,stDev = 24,alpha=0.025/2,beta=0.2)$nFixed1/2)

> library(rpact)

> designIN <- getDesignInverseNormal(kMax = 2, alpha = 0.025, sided=1, typeOfDesign = "OF",

+ informationRates = c(0.5, 1))

> flex_adap_sim <- getSimulationMultiArmMeans(design = designIN,

+ activeArms = 2,

+ typeOfShape = "userDefined",

+ effectMatrix = matrix(c(10,4), nrow = 1),

+ stDev = 24,

+ plannedSubjects = c(56,112),

+ intersectionTest = "Dunnett",

+ typeOfSelection = "best",

+ successCriterion = "atLeastOne",

+ maxNumberOfIterations = 1e5,

+ seed = 1234)

typeOfShape: Models dose-response relationship ⇒ effectMatrix.

typeOfSelection: Defines how treatment arm(s) selected at interim.

successCriterion: Criterion to stop trial for efficacy at interim: all or best.
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Example: Adaptive design simulation using rpact

> summary(flex_adap_sim)

Simulation of a continuous endpoint (multi-arm design)

Sequential analysis with a maximum of 2 looks

(inverse normal combination test design), overall significance level 2.5%

(one-sided).

The results were simulated for a multi-arm comparisons for means

(2 treatments vs. control), H0: mu(i) - mu(control) = 0, H1: mu_max = 10,

standard deviation = 24, planned cumulative sample size = c(56, 112),

effect shape = user defined, intersection test = Dunnett, selection = best,

effect measure based on effect estimate, success criterion: at least one,

simulation runs = 100000, seed = 1234.

...
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Example: Adaptive design simulation using rpact

...

Stage 1 2

Fixed weight 0.707 0.707

Efficacy boundary (z-value scale) 2.797 1.977

Reject at least one 0.8008

Rejected arms per stage

Treatment arm 1 0.2143 0.5549

Treatment arm 2 0.0236 0.0278

Success per stage 0.2181 0.5827

Expected number of subjects 255.6

Overall exit probability 0.2181

Stagewise number of subjects

Treatment arm 1 56.0 49.9

Treatment arm 2 56.0 6.1

Control arm 56.0 56.0

Selected arms

Treatment arm 1 1.0000 0.6967

Treatment arm 2 1.0000 0.0852

Number of active arms 2.000 1.000

Conditional power (achieved) 0.3888

Legend:

(i): treatment arm i
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Prespecified vs. flexible adaptive MAMS

pre-specified flexible adaptive

Conceptually joint distribution of cumulative test statis-

tics

combine stagewise p-values

Control arm Shared control arm

Attractiveness P(randomized to control) low ⇒ popular with patients

Operational More aligned than separate trials, shared infrastructure

FWER control Control FWER across all comparison, as opposed to separate trials

Flexibility Once trial started must be conducted as

specified.

Adaptive extension: Magirr et al. (2014),

Ghosh et al. (2020).

Design changes (drop arm, change popula-

tion, sample size re-estimation, ...) can be

made at interim without pre-specification,

while maintaining FWER.

R implementation MAMS. Basic functionality (sample size,

power, simulation) only. Only simulates

test statistics (not patients) for T2E. No

seed can be set for simulations.

rpact: Flexible simulation and analysis

functions. Only simulates test statistics for

T2E. Allowing interim decisions based on

surrogate endpoints planned.

asd: sample size for enrichment and arm se-

lection, including surrogacy. Specification

for arm selection for T2E unclear.
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Example: Gatsby trial
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Gatsby: Adaptive dose-selection trial
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Gatsby: Study design features

Patient-wise staging:

Final analysis data from stage 1: After 83% of stage 1 patients (all 3 groups)

have died.

Final analysis data from stage 2: After 63% of stage 2 patients (selected +

control group) have died.

Notes:

Requires that regimen selection does not affect study procedures. Especially,

OS follow-up needs to continue until final analysis for all 3 groups.

Final analysis cut-off date for stage 1 and stage 2 data may not perfectly

align.

Guarantees independence of stage 1 and stage 2 p-values under the null.

p-value combination: Inverse normal combination test, weights equal to square root

of relative event number from each stage.

Intersection test: Simes test.
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Gatsby: Study design features (continued)

Treatment regimen selection:

Performed by an IDMC based on interim data from stage 1 patients.

Design and selection criteria based on extensive clinical trial simulations using

multivariate normal models for the correlation between cycle 1 AUC,

treatment-related mortality (TRM), and OS data.

Positive Health Authority feedback.

Efficiency gains over two separate trials:

No white space between dose selection and Phase 3.

Re-use dose selection data for confirmatory analysis!

Gatsby was negative, because drug did not work sufficiently. Thuss-Patience et al. (2017)

Relevant references: Magirr et al. (2016) (alternative stagings and approaches for

adaptive survival trials), Jenkins et al. (2011), Carreras et al. (2015) (interim decisions

based on surrogates).
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Final comments
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Final comments

Think of“MAMS”as of“platform”: no clear definition, rather focus on specific designs

and their statistical properties.

Flexible adaptive multiarm designs may offer an efficient way to develop drugs:

Theory well established.

Regulators accept it - if well planned and run.

We have standard R tools to plan them: MAMS, rpact, asd (though additional

fine-tuning may be required).

May involve more work than“standard” approaches. But: upfront investment

may pay off in shorter and more efficient trials. Do not focus on date of first

patient in, but on date of filing!
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Thank you for your attention.

marcel.wolbers@roche.com

kaspar.rufibach@roche.com
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